所属成套资源:【讲通练透】高考数学一轮复习(全国通用)
高考数学一轮复习 专题5.2 同角三角函数的基本关系与诱导公式(讲)
展开这是一份高考数学一轮复习 专题5.2 同角三角函数的基本关系与诱导公式(讲),文件包含专题52同角三角函数的基本关系与诱导公式讲教师版docx、专题52同角三角函数的基本关系与诱导公式讲学生版docx等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。
高考数学一轮复习策略
1、揣摩例题。
课本上和老师讲解的例题,一般都具有一定的典型性和代表性。要认真研究,深刻理解,要透过“样板”,学会通过逻辑思维,灵活运用所学知识去分析问题和解决问题,特别是要学习分析问题的思路、解决问题的方法,并能总结出解题的规律。
2、精练习题
复习时不要搞“题海战术”,应在老师的指导下,选一些源于课本的变式题,或体现基本概念、基本方法的基本题,通过解题来提高思维能力和解题技巧,加深对所学知识的深入理解。在解题时,要独立思考,一题多思,一题多解,反复玩味,悟出道理。
3、加强审题的规范性
每每大考过后,总有同学抱怨没考好,纠其原因是考试时没有注意审题。审题决定了成功与否,不解决这个问题势必影响到高考的成败。那么怎么审题呢? 应找出题目中的已知条件 ;善于挖掘题目中的隐含条件 ;认真分析条件与目标的联系,确定解题思路 。
4、重视错题
“错误是最好的老师”,但更重要的是寻找错因,及时进行总结,三五个字,一两句话都行,言简意赅,切中要害,以利于吸取教训,力求相同的错误不犯第二次。
专题5.2 同角三角函数的基本关系与诱导公式
新课程考试要求 | 1. 理解同角三角函数的基本关系. 2. 掌握正弦、余弦、正切的诱导公式. |
核心素养 | 本节涉及所有的数学核心素养:逻辑推理(多例)、直观想象(例7)、数学运算(多例)、数据分析等. |
考向预测 | (1)公式的应用. (2)高考对同角三角函数基本关系式和诱导公式的考查方式以小题或在大题中应用为主,较多年份与其它三角公式的应用综合考查. |
【知识清单】
知识点1.同角三角函数的基本关系式
1.同角三角函数的基本关系式
(1)平方关系:sin2α+cos2α=1(α∈R).
(2)商数关系:tan α=.
2.对同角三角函数基本关系式的理解
注意“同角”,这里“同角”有两层含义,一是“角相同”,二是对“任意”一个角(在使函数有意义的前提下)关系式都成立,即与角的表达形式无关,如sin23α+cos23α=1成立,但是sin2α+cos2β=1就不一定成立.
3.常用的等价变形
sin2α+cos2α=1⇒
tanα=⇒
知识点2.三角函数诱导公式
六组诱导公式
角 函数 | 2kπ+α(k∈Z) | π+α | -α | π-α | -α | +α |
正弦 | sin_α | -sin_α | -sin_α | sin_α | cos_α | cos_α |
余弦 | cos_α | -cos_α | cos_α | -cos_α | sin_α | -sin_α |
正切 | tan_α | tan_α | -tan_α | -tan_α |
|
|
对于角“±α”(k∈Z)的三角函数记忆口诀“奇变偶不变,符号看象限”,“奇变偶不变”是指“当k为奇数时,正弦变余弦,余弦变正弦;当k为偶数时,函数名不变”.“符号看象限”是指“在α的三角函数值前面加上当α为锐角时,原函数值的符号”
知识点3.特殊角的三角函数值(熟记)
【考点分类剖析】
考点一 同角三角函数的基本关系式
【典例1】(2021·辽宁葫芦岛市·高三二模)若,为钝角,则的值为___________(用表示).
【典例2】(2020·金华市江南中学高一月考)已知=2,则tanx=____,sinxcosx=____.
【规律方法】
1.同角三角函数关系式的三种应用方法--“弦切互化法”、““1”的灵活代换法”、“和积转换法”
(1)利用sin2α+cos2α=1可实现α的正弦、余弦的互化,注意等;
(2)由一个角的任一三角函数值可求出这个角的另外两个三角函数值,因为利用“平方关系”公式,需求平方根,会出现两解,需根据角所在的象限判断符号,当角所在的象限不明确时,要进行分类讨论.
2. 利用=tanα可以实现角α的弦切互化.
(1)若已知tanα=m,求形如(或)的值,其方法是将分子、分母同除以cosα(或cos2α)转化为tanα的代数式,再求值,如果先求出sinα和cosα的值再代入,那么运算量会很大,问题的解决就会变得繁琐.
(2)形如asin2α+bsinαcosα+ccos2α通常把分母看作1,然后用sin2α+cos2α代换,分子、分母同除以cos2α再求解.
【变式探究】
1.【多选题】若,且为锐角,则下列选项中正确的有( )
A. B.
C. D.
2.(2020·山西平城�大同一中高一月考)已知,则( )
A. B. C. D.
【总结提升】
在使用开平方关系sinα=±和cosα=±时,一定要注意正负号的选取,确定正负号的依据是角α所在的象限,如果角α所在的象限是已知的,则按三角函数在各个象限的符号来确定正负号;如果角α所在的象限是未知的,则需要按象限进行讨论.
考点二 sinαcosα与sinαcosα的关系及应用
【典例3】(2021·山西临汾市·高三二模(理))已知,且,则________.
【典例4】(2020·永州市第四中学高一月考)已知.试用k表示的值.
【规律方法】
和积转换法:利用的关系进行变形、转化.
【变式探究】
1.(2019·山东高三期末(理))已知,,则( )
A. B. C.或 D.或
2.(2021·全国高一专题练习)已知,则( )
A. B. C. D.
【总结提升】
1.对于三角函数式sinθ±cosθ,sinθ·cosθ之间的关系,可以通过(sinθ±cosθ)2=1±2sinθ·cosθ进行转化.
2.若已知sinθ±cosθ,sinθ·cosθ中三者之一,利用方程思想进一步可以求得sinθ,cosθ的值,从而求出其余的三角函数值.
考点三 利用诱导公式化简求值
【典例5】(全国高考真题)已知θ是第四象限角,且sin(θ+)=,则tan(θ–)= .
【典例6】(2020·江苏省通州高级中学高一月考)(1)已知,求的值;
(2)已知,且,求的值.
【规律方法】
1.利用诱导公式化简求值的步骤:(1)负化正;(2)大化小;(3)小化锐;(4)锐求值.
2.利用诱导公式化简三角函数的基本思路:(1)分析结构特点,选择恰当公式;(2)利用公式化成单角三角函数;(3)整理得最简形式.
3.化简要求:(1)化简过程是恒等变形;(2)结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值.
【变式探究】
1. (全国高考真题(文))函数f(x)=sin(x+)+cos(x−)的最大值为( )
A. B.1 C. D.
2.(2020·永州市第四中学高一月考)已知是第四象限角,.
(1)化简.
(2)若,求的值.
【总结提升】
用诱导公式求值时,要善于观察所给角之间的关系,利用整体代换的思想简化解题过程.常见的互余关系有-α与+α,+α与-α,+α与-α等,常见的互补关系有-θ与+θ,+θ与-θ,+θ与-θ等.
考点四 同角三角函数基本关系式、诱导公式的综合应用
【典例7】(2021·河南高一三模)已知角的终边经过点().
(1)求的值;
(2)若是第二象限角,求的值.
【典例8】(2020·山东诸城�高一期中)已知,且是第________象限角.
从①一,②二,③三,④四,这四个选项中选择一个你认为恰当的选项填在上面的横线上,并根据你的选择,解答以下问题:
(1)求的值;
(2)化简求值:.
【规律方法】
(1)三角恒等式的证明一般有三种方法:①一端化简等于另一端;②两端同时化简使之等于同一个式子;③作恒等式两端的差式使之为0.
(2)证明条件恒等式,一般有两种方法:一是在从被证等式一边推向另一边的适当时候将条件代入,推出被证等式的另一边,这种方法称作代入法;二是直接将条件等式变形,变形为被证的等式,这种方法称作推出法,证明条件等式时,不论使用哪一种方法,都要依据要证的目标的特征进行变形.
【变式探究】
1.(2021·河南高一期中(文))已知,且,为方程的两根.
(1)求的值;
(2)求的值.
2.(2020·武威第六中学高一期末)已知α是第三象限角,.
(1)化简;
(2)若,求的值;
【总结提升】
三角函数式化简的方法和技巧:
(1)方法:三角函数式化简的关键是抓住函数名称之间的关系和角之间的关系,据此灵活应用相关的公式及变形,解决问题.
(2)技巧:①异名化同名;②异角化同角;③切化弦.
相关试卷
这是一份新高考数学一轮复习精选讲练专题4.3 同角三角函数的基本关系及诱导公式(含解析),共10页。试卷主要包含了同角三角函数的基本关系,诱导公式等内容,欢迎下载使用。
这是一份2024届高考数学复习第一轮讲练测专题5.2 同角三角函数的基本关系与诱导公式 学生版,共4页。试卷主要包含了若,求的值等内容,欢迎下载使用。
这是一份高考数学一轮复习 专题5.2 同角三角函数的基本关系与诱导公式(练),文件包含专题52同角三角函数的基本关系与诱导公式练教师版docx、专题52同角三角函数的基本关系与诱导公式练学生版docx等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。