所属成套资源:2023年中考数学二轮专题复习 压轴题专题练习(2份打包,教师版+原卷版)
2023年中考数学二轮专题复习《二次函数压轴题-几何图形的平移问题》(2份打包,教师版+原卷版)
展开
这是一份2023年中考数学二轮专题复习《二次函数压轴题-几何图形的平移问题》(2份打包,教师版+原卷版),文件包含2023年中考数学二轮专题复习《二次函数压轴题-几何图形的平移问题》教师版doc、2023年中考数学二轮专题复习《二次函数压轴题-几何图形的平移问题》原卷版doc等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。
2023年中考数学二轮专题复习《二次函数压轴题-几何图形的平移问题》1.已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围. 2.如图,抛物线y1=x2﹣1交x轴的正半轴于点A,交y轴于点B,将此抛物线向右平移4个单位得抛物线y2,两条抛物线相交于点C.(1)请直接写出抛物线y2的解析式;(2)若点P是x轴上一动点,且满足∠CPA=∠OBA,求出所有满足条件的P点坐标;(3)在第四象限内抛物线y2上,是否存在点Q,使得△QOC中OC边上的高h有最大值?若存在,请求出点Q的坐标及h的最大值;若不存在,请说明理由. 3.如图,过A(1,0)、B(3,0)作x轴的垂线,分别交直线y=4﹣x于C、D两点.抛物线y=ax2+bx+c经过O、C、D三点.(1)求抛物线的表达式;(2)点M为直线OD上的一个动点,过M作x轴的垂线交抛物线于点N,问是否存在这样的点M,使得以A、C、M、N为顶点的四边形为平行四边形?若存在,求此时点M的横坐标;若不存在,请说明理由;(3)若△AOC沿CD方向平移(点C在线段CD上,且不与点D重合),在平移的过程中△AOC与△OBD重叠部分的面积记为S,试求S的最大值. 4.如图,顶点M在y轴上的抛物线与直线y=x+1相交于A、B两点,且点A在x轴上,点B的横坐标为2,连结AM、BM.(1)求抛物线的函数关系式;(2)判断△ABM的形状,并说明理由;(3)把抛物线与直线y=x的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为(m,2m),当m满足什么条件时,平移后的抛物线总有不动点. 5.如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B的坐标为(3,0),点C的坐标为(0,5).有一宽度为1,长度足够长的矩形(阴影部分)沿x轴方向平移,与y轴平行的一组对边交抛物线于点P和点Q,交直线AC于点M和点N,交x轴于点E和点F.(1)求抛物线的解析式及点A的坐标;(2)当点M和N都在线段AC上时,连接MF,如果sin∠AMF=,求点Q的坐标;(3)在矩形的平移过程中,是否存在以点P,Q,M,N为顶点的四边形是平行四边形,若存在,求出点M的坐标;若不存在,请说明理由. 6.如图,在平面直角坐标系中,已知点A的坐标(2,4),直线x=2与x轴相交于点B,连接OA,抛物线y=x2从点O沿OA方向平移,与直线x=2交于点P,顶点M移动到点A时停止.(1)当M落在OA的中点时,则点M的坐标为 .(2)设抛物线顶点M的横坐标为m,①用m的代数式表示点P的坐标;②当m为何值时,线段PA最长?(3)当线段PA最长时,相应的抛物线上有一点Q,使△QMA的面积与△PMA的面积相等,求此时点Q的坐标. 7.如图,经过点A(0,-4)的抛物线y=x2+bx+c与x轴相交于点B(-0,0)和C,O为坐标原点.(1)求抛物线的解析式;(2)将抛物线y=x2+bx+c向上平移个单位长度、再向左平移m(m>0)个单位长度,得到新抛物线.若新抛物线的顶点P在△ABC内,求m的取值范围;(3)设点M在y轴上,∠OMB+∠OAB=∠ACB,求AM的长. 8.如图,抛物线y=ax2+bx+c经过△ABC的三个顶点,与y轴相交于(0,),点A坐标为(﹣1,2),点B是点A关于y轴的对称点,点C在x轴的正半轴上.(1)求该抛物线的函数关系表达式.(2)点F为线段AC上一动点,过F作FE⊥x轴,FG⊥y轴,垂足分别为E、G,当四边形OEFG为正方形时,求出F点的坐标.(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求t的值;若不存在请说明理由. 9.如图,已知抛物线y=x2+bx+c与x轴交于点A(﹣1,0)、C,与y轴交于点B(0,3),抛物线的顶点为P.(1)求抛物线的解析式;(2)若抛物线向下平移k个单位后经过点(﹣5,6).①求k的值及平移后抛物线所对应函数的最小值;②设平移后抛物线与y轴交于点D,顶点为Q,点M是平移后的抛物线上的一个动点,请探究:当点M在何处时,△MBD的面积是△MPQ面积的2倍?求出此时点M的坐标. 10.如图甲,四边形OABC的边OA、OC分别在x轴、y轴的正半轴上,顶点在B点的抛物线交x轴于点A、D,交y轴于点E,连结AB、AE、BE.已知tan∠CBE=,A(3,0),D(-1,0),E(0,3).(1)求抛物线的解析式及顶点B的坐标;(2)求证:CB是△ABE外接圆的切线;(3)试探究坐标轴上是否存在一点P,使以D、E、P为顶点的三角形与△ABE相似,若存在,直接写出点P的坐标;若不存在,请说明理由;(4)设△AOE沿x轴正方向平移t个单位长度(0<t≤3)时,△AOE与△ABE重叠部分的面积为s,求s与t之间的函数关系式,并指出t的取值范围. 11.如图,抛物线C1:y=x2+bx+c经过原点,与x轴的另一个交点为(2,0),将抛物线C1向右平移m(m>0)个单位得到抛物线C2,C2交x轴于A、B两点(点A在点B的左边),交y轴于点c.(1)求抛物线C1的解析式及顶点坐标.(2)以AC为直角边向上作直角三角形ACD(∠CAD是直角),且tan∠DCA=,当点D落在抛物线C2的对称轴上时,求抛物线C3的解析式.(3)若抛物线C2的对称轴上存在点P,并且以P为圆心AC长为半径的圆经过A,C两点,求m的值. 12.如图,已知抛物线y=ax2+bx+c经过点A(﹣3,0),B(9,0)和C(0,4).CD垂直于y轴,交抛物线于点D,DE垂直与x轴,垂足为E,l是抛物线的对称轴,点F是抛物线的顶点.(1)求出二次函数的表达式以及点D的坐标;(2)若Rt△AOC沿x轴向右平移到其直角边OC与对称轴l重合,再沿对称轴l向上平移到点C与点F重合,得到Rt△A1O1F,求此时Rt△A1O1F与矩形OCDE重叠部分的图形的面积;(3)若Rt△AOC沿x轴向右平移t个单位长度(0<t≤6)得到Rt△A2O2C2,Rt△A2O2C2与Rt△OED重叠部分的图形面积记为S,求S与t之间的函数表达式,并写出自变量t的取值范围.
相关试卷
这是一份中考数学二轮压轴培优专题 二次函数的计算与证明综合问题(2份打包,教师版+原卷版),文件包含中考数学二轮压轴培优专题二次函数的计算与证明综合问题教师版doc、中考数学二轮压轴培优专题二次函数的计算与证明综合问题原卷版doc等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。
这是一份中考数学二轮压轴培优专题 二次函数与新定义综合问题(2份打包,教师版+原卷版),文件包含中考数学二轮压轴培优专题二次函数与新定义综合问题教师版doc、中考数学二轮压轴培优专题二次函数与新定义综合问题原卷版doc等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。
这是一份中考数学二轮压轴培优专题 二次函数与相似问题(2份打包,教师版+原卷版),文件包含中考数学二轮压轴培优专题二次函数与相似问题教师版doc、中考数学二轮压轴培优专题二次函数与相似问题原卷版doc等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。