终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    【中考一轮复习】2023年中考数学复习训练——第13讲 一次函数(含解析)

    立即下载
    加入资料篮
    【中考一轮复习】2023年中考数学复习训练——第13讲 一次函数(含解析)第1页
    【中考一轮复习】2023年中考数学复习训练——第13讲 一次函数(含解析)第2页
    【中考一轮复习】2023年中考数学复习训练——第13讲 一次函数(含解析)第3页
    还剩11页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【中考一轮复习】2023年中考数学复习训练——第13讲 一次函数(含解析)

    展开

    这是一份【中考一轮复习】2023年中考数学复习训练——第13讲 一次函数(含解析),共14页。
    1.点在正比例函数()的图象上,则的值为 ( )
    A.-15B.15C.D.
    2.在平面直角坐标系中,一次函数的图象与轴的交点的坐标为 ( )
    A.B.C.D.
    3.若实数k、b是一元二次方程的两个根,且,则一次函数的图象不经过 ( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    4.若一次函数的图象经过点,,则与的大小关系是( )
    A.B.C.D.
    5.如图,平面直角坐标系中,在直线和轴之间由小到大依次画出若干个等腰直角三角形(图中所示的阴影部分),其中一条直角边在轴上,另一条直角边与轴垂直,则第个等腰直角三角形的面积是 ( )
    A.B.C.D.
    二、填空题
    6.如图,点的坐标是(0,3),将沿轴向右平移至,点的对应点E恰好落在直线上,则点移动的距离是______.
    7.将直线向下平移2个单位长度,平移后直线的解析式为_____.
    8.若,且,则的取值范围为______.
    9.一次函数的值随值的增大而减少,则常数的取值范围是______.
    10.如图,在平面直角坐标系xOy中,点A的坐标为(0,4),P是x轴上一动点,把线段PA绕点P顺时针旋转60°得到线段PF,连接OF,则线段OF长的最小值是__________.
    三、解答题
    11.在平面直角坐标系内有三点A(−1,4)、B(−3,2)、C(0,6).
    (1)求过其中两点的直线的函数表达式(选一种情形作答);
    (2)判断A、B、C三点是否在同一直线上,并说明理由.
    12.如图,直线y=x+1与x轴交于点A,点A关于y轴的对称点为A′,经过点A′和y轴上的点B(0,2)的直线设为y=kx+b.
    (1)求点A′的坐标;
    (2)确定直线A′B对应的函数表达式.
    13.某种商品每件的进价为10元,若每件按20元的价格销售,则每月能卖出360件;若每件按30元的价格销售,则每月能卖出60件.假定每月的销售件数y是销售价格x(单位:元)的一次函数.
    (1)求y关于x的一次函数解析式;
    (2)当销售价格定为多少元时,每月获得的利润最大?并求此最大利润.
    14.甲、乙两个探测气球分别从海拔和处同时出发,匀速上升.下图是甲、乙两个探测气球所在位置的海拔y(单位:m)与气球上升时间x(单位:)的函数图象.
    (1)求这两个气球在上升过程中y关于x的函数解析式;
    (2)当这两个气球的海拔高度相差时,求上升的时间.
    15.如图,直线l1:y=x+3与过点A(3,0)的直线l2交于点C(1,m),与x轴交于点B.
    (1)求直线l2的解析式;
    (2)点M在直线l1上,MN∥y轴,交直线l2于点N,若MN=AB,求点M的坐标.
    16.某水果店购进甲、乙两种苹果的进价分别为8元/、12元/,这两种苹果的销售额y(单位:元)与销售量x(单位:)之间的关系如图所示.
    (1)写出图中点B表示的实际意义;
    (2)分别求甲、乙两种苹果销售额y(单位:元)与销售量x(单位:)之间的函数解析式,并写出x的取值范围;
    (3)若不计损耗等因素,当甲、乙两种苹果的销售量均为时,它们的利润和为1500元.求a的值.
    参考答案:
    1.D
    【分析】直接把已知点代入,即可求出k的值.
    【解析】解:∵点在正比例函数的图象上,
    ∴,
    ∴,
    故选:D.
    【点睛】此题考查了用待定系数法求正比例函数的解析式,解题关键是正确得出k的值.
    2.D
    【分析】令x=0,求出函数值,即可求解.
    【解析】解:令x=0, ,
    ∴一次函数的图象与轴的交点的坐标为.
    故选:D
    【点睛】本题主要考查了一次函数的图象和性质,熟练掌握一次函数的图象和性质是解题的关键.
    3.C
    【分析】根据一元二次方程的解法求出k、b的值,由一次函数的图像即可求得.
    【解析】∵实数k、b是一元二次方程的两个根,且,
    ∴,
    ∴一次函数表达式为,
    有图像可知,一次函数不经过第三象限.
    故选:C.
    【点睛】此题考查了一元二次方程的解法,一次函数图像,解题的关键是熟练掌握一元二次方程的解法和一次函数图像.
    4.A
    【分析】先根据一次函数的解析式判断出函数的增减性,再根据-3<4即可得出结论.
    【解析】解:∵一次函数y=2x+1中,k=2>0,
    ∴y随着x的增大而增大.
    ∵点(-3,y1)和(4,y2)是一次函数y=2x+1图象上的两个点,-3<4,
    ∴y1<y2.
    故选:A.
    【点睛】本题考查的是一次函数图象上点的坐标特征,熟知一次函数图象的增减性是解答此题的关键.
    5.C
    【分析】根据一次函数图象上点的坐标特征,可得第个等腰直角三角形的直角边长,求出第个等腰直角三角形的面积,用同样的方法求出第个等腰直角三角形的面积,第个等腰直角三角形的面积,找出其中的规律即可求出第个等腰直角三角形的面积.
    【解析】解:当时,,
    根据题意,第个等腰直角三角形的直角边长为,
    第个等腰直角三角形的面积为,
    当时,,
    第个等腰直角三角形的直角边长为,
    第个等腰直角三角形的面积为,
    当时,,
    第个等腰直角三角形的直角边长为,
    第个等腰直角三角形的面积为,
    依此规律,第个等腰直角三角形的面积为,
    故选:C.
    【点睛】本题考查了一次函数图象上点的坐标特征与规律的综合,涉及等腰直角三角形的性质,找出规律是解题的关键.
    6.3
    【分析】将y=3代入一次函数解析式求出x值,由此即可得出点E的坐标为(3,3),进而可得出△OAB沿x轴向右平移3个单位得到△CDE,根据平移的性质即可得出点A与其对应点间的距离.
    【解析】解:当时,,
    点的坐标为,
    沿轴向右平移个单位得到,
    点与其对应点间的距离为,
    即点移动的距离是3.
    故答案为:.
    【点睛】本题考查了一次函数图像上点的坐标特征以及坐标与图形变换中的平移,将y=3代入一次函数解析式中求出点E的横坐标是解题的关键.
    7.
    【分析】直接根据“上加下减,左加右减”的平移规律求解即可.
    【解析】将直线y=-6x向下平移2个单位长度,所得直线的解析式为y=-6x-2.
    故答案为y=-6x-2.
    【点睛】本题考查一次函数图象的平移变换.掌握其规律 “左加右减,上加下减”是解答本题的关键.
    8.
    【分析】根据可得y=﹣2x+1,k=﹣2<0进而得出,当y=0时,x取得最大值,当y=1时,x取得最小值,将y=0和y=1代入解析式,可得答案.
    【解析】解:根据可得y=﹣2x+1,
    ∴k=﹣2<0
    ∵,
    ∴当y=0时,x取得最大值,且最大值为,
    当y=1时,x取得最小值,且最小值为0,

    故答案为:.
    【点睛】此题考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.
    9.
    【分析】由题意,先根据一次函数的性质得出关于的不等式,再解不等式即可.
    【解析】解:一次函数的值随值的增大而减少,

    解得:,
    故答案是:.
    【点睛】本题考查了一次函数的图象与系数的关系,解题的关键是:熟知一次函数的增减性.
    10.2
    【分析】点F运动所形成的图象是一条直线,当OF⊥F1F2时,垂线段OF最短,当点F1在x轴上时,由勾股定理得:,进而得,求得点F1的坐标为,当点F2在y轴上时,求得点F2的坐标为(0,-4),最后根据待定系数法,求得直线F1F2的解析式为y=x-4,再由线段中垂线性质得出,在Rt△OF1F2中,设点O到F1F2的距离为h,则根据面积法得,即,解得h=2,根据垂线段最短,即可得到线段OF的最小值为2.
    【解析】解:∵将线段PA绕点P顺时针旋转60°得到线段PF,
    ∴∠APF=60°,PF=PA,
    ∴△APF是等边三角形,
    ∴AP=AF,
    如图,当点F1在x轴上时,△P1AF1为等边三角形,
    则P1A=P1F1=AF1,∠AP1F1=60°,
    ∵AO⊥P1F1,
    ∴P1O=F1O,∠AOP1=90°,
    ∴∠P1AO=30°,且AO=4,
    由勾股定理得:,
    ∴,
    ∴点F1的坐标为,
    如图,当点F2在y轴上时,
    ∵△P2AF2为等边三角形,AO⊥P2O,
    ∴AO=F2O=4,
    ∴点F2的坐标为(0,-4),
    ∵,
    ∴∠OF1F2=60°,
    ∴点F运动所形成的图象是一条直线,
    ∴当OF⊥F1F2时,线段OF最短,
    设直线F1F2的解析式为y=kx+b,
    则,
    解得,
    ∴直线F1F2的解析式为y=x-4,
    ∵AO=F2O=4,AO⊥P1F1,
    ∴,
    在Rt△OF1F2中,OF⊥F1F2,
    设点O到F1F2的距离为h,则,
    ∴,
    解得h=2,
    即线段OF的最小值为2,
    故答案为2.
    【点睛】本题属于三角形的综合题,主要考查了旋转的性质,勾股定理的应用,等边三角形的性质以及待定系数法的运用等,解决问题的关键是作辅助线构造等边三角形以及面积法求最短距离,解题时注意勾股定理、等边三角形三线合一以及方程思想的灵活运用.
    11.(1)直线AB的解析式y=x+5;
    (2)点A、B、C三点不在同一条直线上,理由见解析
    【分析】(1)根据A、B两点的坐标求得直线AB的解析式;
    (2)把C的坐标代入看是否符合解析式即可判定.
    【解析】(1)解:设A(−1,4)、B(−3,2)两点所在直线解析式为y=kx+b,
    ∴,
    解得,
    ∴直线AB的解析式y=x+5;
    (2)解:当x=0时,y=0+5≠6,
    ∴点C(0,6)不在直线AB上,即点A、B、C三点不在同一条直线上.
    【点睛】本题考查了待定系数法求解析式,以及判定是否是直线上的点,掌握一次函数图像上的点的坐标特征是关键.
    12.(1)A′(2,0)
    (2)y=﹣x+2
    【分析】(1)利用直线解析式求得点A坐标,利用关于y轴的对称点的坐标的特征解答即可;
    (2)利用待定系数法解答即可.
    【解析】(1)解:令y=0,则x+1=0,
    ∴x=﹣2,
    ∴A(﹣2,0).
    ∵点A关于y轴的对称点为A′,
    ∴A′(2,0).
    (2)解:设直线A′B的函数表达式为y=kx+b,
    ∴,
    解得:,
    ∴直线A′B对应的函数表达式为y=﹣x+2.
    【点睛】本题主要考查了一次函数图象的性质、一次函数图象上点的坐标的特征、待定系数法确定函数的解析式、关于y轴的对称点的坐标的特征等知识,利用待定系数法求函数解析式是解题的关键.
    13.(1)
    (2)价格为21元时,才能使每月获得最大利润,最大利润为3630元
    【分析】(1)设,把,和,代入求出k、b的值,从而得出答案;
    (2)根据总利润=每件利润×每月销售量列出函数解析式,配方成顶点式,利用二次函数的性质求解可得答案.
    【解析】(1)解:设,把,和,代入可得

    解得,
    则;
    (2)解:每月获得利润



    ∵,
    ∴当时,P有最大值,最大值为3630.
    答:当价格为21元时,才能使每月获得最大利润,最大利润为3630元.
    【点睛】本题主要考查了一次函数解析式的求法和二次函数的应用,解题的关键是理解题意找到其中蕴含的相等关系,并据此得出函数解析式及二次函数的性质,然后再利用二次函数求最值.
    14.(1)甲:,乙:;(2)
    【分析】(1)分别设出甲乙的函数解析式,利用待定系数法求解解析式即可;
    (2)由题意得利用甲乙的函数解析式列方程,解方程并检验可得答案.
    【解析】解:(1)设甲气球上升过程中:,
    由题意得:甲的图像经过:两点,

    解得:
    所以甲上升过程中:
    设乙气球上升过程中:
    由题意得:乙的图像经过:两点,

    解得:
    所以乙上升过程中:
    (2)由两个气球的海拔高度相差,




    解得:或(不合题意,舍去)
    所以当这两个气球的海拔高度相差时,上升的时间为
    【点睛】本题考查的是一次函数的应用,考查利用待定系数法求解一次函数的解析式,掌握以上知识是解题的关键.
    15.(1)y=﹣2x+6;(2)M(3,6)或(﹣1,2).
    【分析】(1)把点C的坐标代入y=x+3,求出m的值,然后利用待定系数法求出直线的解析式;
    (2)由已知条件得出M、N两点的横坐标,利用两点间距离公式求出M的坐标.
    【解析】解:(1)在y=x+3中,令y=0,得x=﹣3,
    ∴B(﹣3,0),
    把x=1代入y=x+3得y=4,
    ∴C(1,4),
    设直线l2的解析式为y=kx+b,
    ∴,解得,
    ∴直线l2的解析式为y=﹣2x+6;
    (2)AB=3﹣(﹣3)=6,
    设M(a,a+3),由MN∥y轴,得N(a,﹣2a+6),
    MN=|a+3﹣(﹣2a+6)|=AB=6,
    解得a=3或a=﹣1,
    ∴M(3,6)或(﹣1,2).
    【点睛】本题考查了两条直线相交或平行问题,待定系数法求一次函数的解析式,求得交点坐标是解题的关键.
    16.(1)当销售量为60kg时,甲、乙两种苹果的销售额相等
    (2),
    (3)80
    【分析】(1)结合图象可知:B点表示的意义为:当销售量为60kg时,甲、乙两种苹果的销售额相等;
    (2)利用待定系数法求函数解析式即可;
    (3)分别表示出甲的利润,乙的利润,再根据甲、乙两种苹果的销售量均为时,它们的利润和为1500元建立方程求解即可.
    【解析】(1)解:由图可知:
    B表示的实际意义:当销售量为60kg时,甲、乙两种苹果的销售额相等.
    (2)解:由图可知:过,,
    设甲种苹果销售额y(单位:元)与销售量x(单位:)之间的函数解析式为:,
    ∴,解得:,
    ∴甲种苹果销售额y(单位:元)与销售量x(单位:)之间的函数解析式为:;
    当时,乙函数图象过,,
    设乙两种苹果销售额y(单位:元)与销售量x(单位:)之间的函数解析式为:,利用待定系数法得:,解得:,
    ∴;
    当时,乙函数图象过,,
    设乙两种苹果销售额y(单位:元)与销售量x(单位:)之间的函数解析式为:,利用待定系数法得:,解得:,
    ∴;
    综上所述:乙两种苹果销售额y(单位:元)与销售量x(单位:)之间的函数解析式为;
    (3)解:甲的利润为:,
    乙的利润为:
    ∴当时,
    甲乙的利润和为:,解得(舍去);
    当时,
    甲乙的利润和为:,解得;
    ∴当甲、乙两种苹果的销售量均为时,它们的利润和为1500元.
    【点睛】本题考查一次函数图象的实际应用,解题的关键是掌握待定系数法求解析式,结合图象获取有用信息.

    相关试卷

    第9讲 一次函数及其图像与性质(讲义)(教师版含解析)中考数学一轮复习讲义+训练:

    这是一份第9讲 一次函数及其图像与性质(讲义)(教师版含解析)中考数学一轮复习讲义+训练,文件包含第9讲一次函数及其图像与性质讲义教师版含解析-2023年中考数学一轮复习讲义+训练doc、第9讲一次函数及其图像与性质讲义学生版-2023年中考数学一轮复习讲义+训练doc等2份试卷配套教学资源,其中试卷共49页, 欢迎下载使用。

    【中考一轮复习】2023年中考数学复习训练——第3讲 分式(含解析):

    这是一份【中考一轮复习】2023年中考数学复习训练——第3讲 分式(含解析),共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    【中考一轮复习】2023年中考数学复习训练——第33讲 概率(含解析):

    这是一份【中考一轮复习】2023年中考数学复习训练——第33讲 概率(含解析),共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map