2023年中考数学第一轮重难点题型练习 题型三 实际应用题(无答案)
展开题型三 实际应用题
类型一 行程问题
1. (2022临沂)公路上正在行驶的甲车,发现前方20 m处沿同一方向行驶的乙车后,开始减速.减速后甲车行驶的路程s(单位:m)、速度v(单位:m/s)与时间t(单位:s)的关系分别可以用二次函数和一次函数表示, 其图象如图所示.
(1)当甲车减速至9 m/s时,它行驶的路程是多少?
(2)若乙车以10 m/s的速度匀速行驶,两车何时相距最近,最近距离是多少?
第1题图
2. (2022绥化)小刚和小亮两人沿着直线跑道都从甲地出发,沿着同一方向到达乙地,甲乙两地之间的距离是720米,先到乙地的人原地休息.已知小刚先从甲地出发4秒后,小亮从甲地出发,两人均保持匀速前行,第一次相遇后,保持原速跑一段时间,小刚突然加速,速度比原来增加了2米/秒,并保持这一速度跑到乙地(小刚加速过程忽略不计).小刚与小亮两人的距离S(米)与小亮出发时间t(秒)之间的函数图象,如图所示.根据所给信息解决以下问题.
(1)m=________,n=________;
(2)求CD和EF所在直线的解析式;
(3)直接写出t为何值时,两人相距30米.
第2题图
类型二 方案问题
3. (2022广元)为增强学生体质,丰富学生课余活动,学校决定添置一批篮球和足球.甲、乙两家商场以相同的价格出售同种品牌的篮球和足球,已知篮球价格为200元/个,足球价格为150元/个.
(1)若学校计划用不超过3550元的总费用购买这款篮球和足球共20个,且购买篮球的数量多于购买足球数量的.学校有哪几种购买方案?
(2)若甲、乙两商场各自推出不同的优惠方案:甲商场累计购物超过500元后,超出500元的部分按90%收费;乙商场累计购物超过2000元后,超出2000元的部分按80%收费.若学校按(1)中的方案购买,学校到哪家商场购买花费少?
4. (2022宁波)某通讯公司就手机流量套餐推出三种方案,如下表:
| A方案 | B方案 | C方案 |
每月基本费用(元) | 20 | 56 | 266 |
每月免费使用流量(兆) | 1024 | m | 无限 |
超出后每兆收费(元) | n | n |
|
A,B,C三种方案每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系如图所示.
(1)请直接写出m,n的值.
(2)在A方案中,当每月使用的流量不少于1024兆时,求每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系式.
(3)在这三种方案中,当每月使用的流量超过多少兆时,选择C方案最划算?
第4题图
类型三 利润问题
5. (2022咸宁)红星工厂研发生产某种产品,成本为3万元/吨,每天最多能生产15吨.工厂为持续发展,尝试与博飞销售公司建立产销合作关系,双方约定:合作第一个月,工厂产品仅由博飞销售公司订购代销,并每天按博飞销售公司当日订购产品数量生产,当日出厂价格y(万元/吨)与当日订购产品数量x(吨)之间的关系如图所示:
(1)直接写出y与x的函数关系式,并写出自变量x的取值范围;
(2)红星工厂按产销合作模式生产这种产品,设第一个y(万元/吨)月单日所获利润为w(万元),
①求w(万元)与x(吨)的函数关系式;
②为响应国家“乡村振兴”政策,红星工厂决定,将合作第一个月中单日所获最大利润捐赠给附近村委会.试问:工厂这次为“乡村振兴”最多捐赠多少万元?
第5题图
6. (2022襄阳)为了切实保护汉江生态环境,襄阳市政府对汉江襄阳段实施全面禁渔.禁渔后,某水库自然生态养殖的鱼在市场上热销,经销商老李每天从该水库购进草鱼和鲢鱼进行销售,两种鱼的进价和售价如下表所示:
品种 | 进价(元/斤) | 售价(元/斤) | |
鲢鱼 | a | 5 | |
草鱼 | b | 销量不超过200斤的部分 | 销量超过200斤的部分 |
8 | 7 |
已知老李购进10斤鲢鱼和20斤草鱼需要155元,购进20斤鲢鱼和10斤草鱼需要130元.
(1)求a, b的值;
(2)老李每天购进两种鱼共300斤,并在当天都销售完,其中销售鲢鱼不少于80斤且不超过120斤,设每天销售鲢鱼x斤(销售过程中损耗不计).
①分别求出每天销售鲢鱼获利y1(元),销售草鱼获利y2(元)与x的函数关系式,并写出x的取值范围;
②端午节这天,老李让利销售,将鲢鱼售价每斤降低m元,草鱼售价全部定为7元/斤,为了保证当天销售这两种鱼总获利W(元)的最小值不少于320元,求m的最大值.
7. (2022扬州)甲,乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话;
第7题图
说明:①汽车数量为整数;②月利润=月租车费-月维护费;
③两公司月利润差=月利润较高公司的利润-月利润较低公司的利润,
在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:
(1)当每个公司租出的汽车为10辆时,甲公司的月利润是________元;当每个公司租出的汽车为________辆时,两公司的月利润相等;
(2)求两公司月利润差的最大值;
(3)甲公司热心公益事业,每租出1辆汽车捐出a元(a>0)给慈善机构,如果捐款后甲公司剩余的月利润仍高于乙公司月利润,且当两公司租出的汽车均为17辆时,甲公司剩余的月利润与乙公司月利润之差最大,求a的取值范围.
类型四 抛物线型问题
8. (2022北部湾经济区)2022年北京冬奥会即将召开,激起了人们对冰雪运动的极大热情.如图是某跳台滑雪训练场的横截面示意图,取某一位置的水平线为x轴,过跳台终点A作水平线的垂线为y轴,建立平面直角坐标系,图中的抛物线C1:y=-x2+x+1近似表示滑雪场地上的一座小山坡,某运动员从点O正上方4米处的A点滑出,滑出后沿一段抛物线C2:y=-x2+bx+c运动.
(1)当运动员运动到离A处的水平距离为4米时,离水平线的高度为8米,求抛物线C2的函数解析式(不要求写出自变量x的取值范围);
(2)在(1)的条件下,当运动员运动的水平距离为多少米时,运动员与小山坡的竖直距离为1米?
(3)当运动员运动到坡顶正上方,且与坡顶距离超过3米时,求b的取值范围.
第8题图
9. (2022嘉兴)在篮球比赛中,东东投出的球在点A处反弹,反弹后球运动的路线为抛物线的一部分(如图①所示建立直角坐标系),抛物线顶点为点B.
(1)求该抛物线的函数表达式;
(2)当球运动到点C时被东东抢到,CD⊥x轴于点D,CD=2.6 m.
①求OD的长;
②东东抢到球后,因遭对方防守无法投篮,他在点D处垂直起跳传球,想将球沿直线快速传给队友华华,目标为华华的接球点E(4,1.3).东东起跳后所持球离地面高度h1(m)(传球前)与东东起跳后时间t(s)满足函数关系式h1=-2(t-0.5)2+2.7(0≤t≤1);小戴在点F(1.5,0)处拦截,他比东东晚0.3 s垂直起跳,其拦截高度h2(m)与东东起跳后时间t(s)的函数关系如图②所示(其中两条抛物线的形状相同).东东的直线传球能否越过小戴的拦截传到点E?若能,东东应在起跳后什么时间范围内传球?若不能,请说明理由(直线传球过程中球运动时间忽略不计).
第9题图
其他类型
10. (2022苏州)如图①,甲、乙都是高为6米的长方体容器,容器甲的底面ABCD是正方形,容器乙的底面EFGH是矩形.如图②,已知正方形ABCD与矩形EFGH满足如下条件:正方形ABCD外切于一个半径为5米的圆O,矩形EFGH内接于这个圆O,EF=2EH.
(1)求容器甲、乙的容积分别为多少立方米?
(2)现在我们分别向容器甲、乙同时持续注水(注水前两个容器是空的),一开始注水流量均为25立方米/小时,4小时后,把容器甲的注水流量增加a立方米/小时,同时保持容器乙的注水流量不变,继续注水2小时后,把容器甲的注水流量再一次增加50立方米/小时,同时容器乙的注水流量仍旧保持不变,直到两个容器的水位高度相同,停止注水.在整个注水过程中,当注水时间为t时,我们把容器甲的水位高度记为h甲,容器乙的水位高度记为h乙,设h乙-h甲=h,已知h(米)关于注水时间t(小时)的函数图象如图③所示,其中MN平行于横轴.根据图中所给信息,解决下列问题:
①求a的值;
②求图③中线段PN所在直线的解析式.
第10题图
2023年中考数学第一轮重难点题型练习 题型一 规律探索(无答案): 这是一份2023年中考数学第一轮重难点题型练习 题型一 规律探索(无答案),共9页。试卷主要包含了 观察下列等式, 观察等式, 观察以下等式等内容,欢迎下载使用。
2023年中考数学第一轮重难点题型练习 题型五 函数图象与性质探究题(无答案): 这是一份2023年中考数学第一轮重难点题型练习 题型五 函数图象与性质探究题(无答案),共8页。试卷主要包含了 背景,51等内容,欢迎下载使用。
2023年中考数学第一轮重难点题型练习 题型四 圆的相关证明与计算(无答案): 这是一份2023年中考数学第一轮重难点题型练习 题型四 圆的相关证明与计算(无答案),共8页。