初中数学中考复习 考点14 三角形及其全等-中考数学考点一遍过
展开
这是一份初中数学中考复习 考点14 三角形及其全等-中考数学考点一遍过,共21页。试卷主要包含了三角形的基础知识,全等三角形等内容,欢迎下载使用。
考点14 三角形及其全等
一、三角形的基础知识
1.三角形的概念
由三条线段首尾顺次相接组成的图形,叫做三角形.
2.三角形的三边关系
(1)三角形三边关系定理:三角形的两边之和大于第三边.
推论:三角形的两边之差小于第三边.
(2)三角形三边关系定理及推论的作用:
①判断三条已知线段能否组成三角形;②当已知两边时,可确定第三边的范围;③证明线段不等关系.
3.三角形的内角和定理及推论
三角形的内角和定理:三角形三个内角和等于180°.
推论:①直角三角形的两个锐角互余;②三角形的一个外角等于和它不相邻的两个内角的和;③三角形的一个外角大于任何一个和它不相邻的内角.
4.三角形中的重要线段
(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线.
(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线.
(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高).
(4)连接三角形两边中点的线段叫做三角形的中位线,三角形的中位线平行于第三边,且等于第三边的一半.
二、全等三角形
1.三角形全等的判定定理:
(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”);
(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”);
(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”);
(4)对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”).
2.全等三角形的性质:
(1)全等三角形的对应边相等,对应角相等;
(2)全等三角形的周长相等,面积相等;学科-网
(3)全等三角形对应的中线、高线、角平分线、中位线都相等.
考向一 三角形的三边关系
在判断三条线段能否组成一个三角形时,可以根据两条较短线段的长度之和是否大于第三条线段的长度来判断.
典例1 小芳有两根长度为6cm和9cm的木条,她想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择长度为__________的木条.
A.2cm B.3cm
C.12cm D.15cm
【答案】C
【解析】设木条的长度为xcm,则9–6
相关试卷
这是一份中考数学考点一遍过 考点13 三角形及其全等,共53页。试卷主要包含了学会运用函数与方程思想,学会运用数形结合思想,要学会抢得分点,学会运用等价转换思想,学会运用分类讨论的思想,转化思想,10等内容,欢迎下载使用。
这是一份初中数学中考复习 考点27 概率-中考数学考点一遍过,共30页。试卷主要包含了事件的分类,概率的计算,利用频率估计概率,概率的应用等内容,欢迎下载使用。
这是一份初中数学中考复习 考点26 统计-中考数学考点一遍过,共28页。试卷主要包含了全面调查与抽样调查,总体,几种常见的统计图表,平均数,众数,方差等内容,欢迎下载使用。