|试卷下载
终身会员
搜索
    上传资料 赚现金
    2023年高考数学二轮复习重点基础练习:专题十一 考点33 直线、平面平行的判定与性质(A卷)
    立即下载
    加入资料篮
    2023年高考数学二轮复习重点基础练习:专题十一 考点33 直线、平面平行的判定与性质(A卷)01
    2023年高考数学二轮复习重点基础练习:专题十一 考点33 直线、平面平行的判定与性质(A卷)02
    2023年高考数学二轮复习重点基础练习:专题十一 考点33 直线、平面平行的判定与性质(A卷)03
    还剩9页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023年高考数学二轮复习重点基础练习:专题十一 考点33 直线、平面平行的判定与性质(A卷)

    展开
    这是一份2023年高考数学二轮复习重点基础练习:专题十一 考点33 直线、平面平行的判定与性质(A卷),共12页。

    专题十一 考点33 直线、平面平行的判定与性质(A卷)

    1.已知abc是三条不同的直线则能保证直线a与平面平行的条件是(   )
    A.

    B.

    C.A,点C,且

    D.

    2.如图,在下列四个正方体中,PRQMNGH分别为所在棱的中点,则在这四个正方体中,阴影平面与PRQ三点所在平面平行的是(   )

    A. B.

    C. D.

    3.如图,已知圆锥的顶点为SAB是底面圆的直径,点C在底面圆上且,点M为劣弧的中点,过直线AC作平面,使得直线平面,设平面SM交于点N,则的值为(   )

    A. B. C. D.

    4.已知直线a和平面,那么能得出的一个条件是(   )

    A.存在一条直线b

    B.存在一条直线b

    C.存在一个平面

    D.存在一个平面

    5.如图,在正方体中,MN分别为棱上一点,且平面ABCD,则下列结论错误的是(   )

    A.平面AMN可能成立

    B.恒成立

    C.平面平面可能成立

    D.正方体被平面AMN所截,其截面多边形不可能是六边形

    6.如图,设EF分别是长方体的棱ABCD的中点,则平面与平面的位置关系是(   )

    A.平行 B.相交但不垂直 C.垂直 D.不确定

    7.如图,已知正方体分别是的中点,则(   )

    A.直线与直线垂直,直线平面
    B.直线与直线平行,直线平面
    C.直线与直线相交,直线平面
    D.直线与直线异面,直线平面

    8.如图,在正方体中,MN分别为AC的中点,则下列说法中错误是(   )

    A.平面

    B.

    C.直线MN与平面ABCD所成的角为45°

    D.异面直线MN所成的角为60°

    9.如图,在长方体中,EFM分别为的中点,过点M的平面与平面DEF平行,且与长方体的面相交,则交线围成的平面图形的面积为(   )

    A. B. C.12 D.24

    10.如图,在正方体中,,点EAD的中点,点FCD.平面,则线段EF的长度等于__________.

    11.如图所示,在正方体中,EFGH分别是棱的中点,NBC的中点,点M在四边形EFGH及其内部运动,则M满足_________时,有平面.

    12.如图,在正方体中,M的中点,则直线DM与平面的位置关系是____________,直线DM与平面的位置关系是_______________.

    13.为两两不重合的平面,lmn为两两不重合的直线,给出下列四个命题:

    ,则

    ,则

    ,则

    ,则.

    其中正确结论的编号为_______________.(请写出所有正确结论的编号)

    14.如图,在四棱锥中,四边形ABCD为平行四边形,ACBD相交于点O,点EPC的中点,.

    求证:

    (1)直线平面BDE.

    (2)平面平面PCD.

    15.如图1在梯形E在线段 沿翻折至的位置连接F中点连接如图2.

    (I)在线段上是否存在一点Q使平面平面?若存在请确定Q的位置若不存在请说明理由

    (Ⅱ)平面平面求三棱锥的体积.


    答案以及解析

    1.答案:D

    解析:AB中,a与平面平行或a在平面内;C中,a与平面平行、相交或a在平面内;D中,a与平面平行.

    2.答案:D

    解析:如图,由题意可知经过PQR三点所在的平面为平面PQEFRG,则点N在经过PQR三点所在的平面内,所以BC错误.因为QE分别为BC的中点,所以.,所以QE是相交直线,所以A错误.故选D.

    3.答案:B

    解析:如图,连接BMAC于点D,连接ND,则平面平面,又平面,所以

    所以.因为AB是底面圆的直径,,点M为劣弧的中点,连接MC,所以

    所以,易得,所以,则.故选B.

    4.答案:C

    解析:在选项ABD中,均有可能a在平面内,错误;在C中,两平面平行,则其中一个平面内的任意一条直线都平行于另一个平面,故C正确.

    5.答案:C

    解析:当MN重合时,平面AMN,故选项A正确;

    因为平面平面,所以,即,故选项B正确;

    因为平面ABCD,所以平面ABCD平面平面,不可能成立,故选项C错误;

    由图形可得选项D正确,故选C.

    6.答案:A

    解析:分别是的中点,.平面平面平面.E分别是AB的中点,,且四边形是平行四边形,.平面平面平面.平面平面平面平面.

    7.答案:A

    解析:易知平面,故,排除BC项;连接,可知,所以平面ABCDA项正确;因为AB不垂直于平面,所以直线MN不垂直于平面D项错误.

    8.答案:D

    解析:如图,连接BD,由MN分别为AC的中点知.因为平面平面,所以平面,故A正确.易知平面平面,所以.,所以,故B正确.易知MN与平面ABCD所成的角即为与平面ABCD所成的角,为45°,故C正确.易知MN所成角即为所成角,为45°,故D错误.故选D.

    9.答案:A

    解析:如图,取的中点N,连接MNANACCM,则四边形MNAC为所求图形.因为,所以四边形为平行四边形,所以.MN分别为的中点,所以,故,且,所以四边形MNAC为梯形,.过点MAC于点P.因为,所以.中,,所以梯形MNAC的面积为.故选A.

    10.答案:

    解析:因为在正方体中,,所以.

    EAD的中点,平面平面ADC平面平面

    所以,所以FDC的中点,所以.

    11.答案:M在线段FH

    解析:连接FHFNHN,因为平面FHN

    平面,所以.

    因为点M在四边形EFGH上及其内部运动,故.

    12.答案:相交;平行

    解析:的中点,直线DM与直线相交,与平面有一个公共点,与平面相交.的中点,连接...四边形为平行四边形,平面.

    13.答案:①③④

    解析:对于,由面面平行的传递性可知正确;对于,若,则相交,所以错误;对于,若两个平面平行,其中一个平面内的任一直线都与另一个平面平行,所以正确;对于,因为,所以,同理,由平行线的传递性可得,所以正确.

    14.答案:(1)见解析

    (2)见解析

    解析:(1)如图,连接OE,因为O为平行四边形ABCD对角线的交点,所以OAC的中点.

    EPC的中点,所以.

    因为平面平面BDE

    所以直线平面BDE.

    (2)因为,所以.

    因为EPC的中点,所以.

    平面平面

    所以平面PCD.

    因为平面BDE

    所以平面平面PCD.

    15.答案:(I)存在

    (Ⅱ)

    解析:(I)Q的中点时平面平面证明如下

    如图连接.

    依题意得

    所以

    所以四边形是平行四边形

    所以.

    因为平面平面所以平面.

    因为分别为的中点

    所以.

    因为平面平面

    所以平面.

    因为平面

    所以平面平面.

    (Ⅱ)依题意由

    为边长为2的等边三角形.

    的中点M连接

    因为

    所以由余弦定理得.

    因为

    所以.

    因为平面平面平面平面平面所以平面.

    因为F的中点

    所以F到平面的距离

    所以.

    相关试卷

    2023届高考数学二轮复习专题十一直线、平面平行的判定与性质作业(A)含答案: 这是一份2023届高考数学二轮复习专题十一直线、平面平行的判定与性质作业(A)含答案,共13页。

    2023高考数学二轮复习专题30 直线、平面平行的判定与性质(原卷版): 这是一份2023高考数学二轮复习专题30 直线、平面平行的判定与性质(原卷版),共27页。

    2023年高考数学二轮复习重点基础练习:专题十一 考点34 直线、平面垂直的判定与性质(B卷): 这是一份2023年高考数学二轮复习重点基础练习:专题十一 考点34 直线、平面垂直的判定与性质(B卷),共12页。试卷主要包含了在四边形ABCD中,,,,等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2023年高考数学二轮复习重点基础练习:专题十一 考点33 直线、平面平行的判定与性质(A卷)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map