所属成套资源:全套2023届高考数学二轮复习考点作业含答案
2023届高考数学二轮复习考点7空间中的平行与垂直作业含答案
展开
这是一份2023届高考数学二轮复习考点7空间中的平行与垂直作业含答案,共9页。
考点突破练7 空间中的平行与垂直1.(2022·浙江杭州模拟)已知底面为菱形的四棱锥P-ABCD中,△PAD是等边三角形,平面PAD⊥平面ABCD,E,F分别是棱PC,AB上的点,从下面①②③中选取两个作为条件,证明另一个成立:①F是线段AB的中点;②E是线段PC的中点;③BE∥平面PFD. 2.(2022·全国甲·文19)小明同学参加综合实践活动,设计了一个封闭的包装盒.包装盒如图所示:底面ABCD是边长为8(单位:cm)的正方形,△EAB,△FBC,△GCD,△HDA均为正三角形,且它们所在的平面都与平面ABCD垂直.(1)证明:EF∥平面ABCD;(2)求该包装盒的容积(不计包装盒材料的厚度). 3.(2022·湖南长郡十五校联考)如图,△ABC是边长为2的等边三角形,E,F分别为AB,AC边的中点,将平面AEF沿EF折叠,M为线段EF的中点.(1)设平面PBE与平面PCF相交于直线l,求证:l⊥BC;(2)平面AEF沿EF折叠过程中,当∠PMA=时,求四棱锥P-BCFE的体积. 4.(2022·四川遂宁模拟)如图,平面五边形ABCDE中,∠B=∠BAD=∠E=∠CDE=90°,CD=DE=EA=,将△ADE沿AD折叠,得四棱锥P-ABCD.(1)证明:PC⊥AD;(2)若平面PAD⊥平面ABCD,求点B到平面PCD的距离.
考点突破练7 空间中的平行与垂直1.证明选①②,证明③.取线段PD的中点M,连接ME,FM.因为F为线段AB的中点,E为线段PC的中点,所以ME∥CD,ME=CD,FB∥CD,FB=CD,则ME∥FB,ME=FB,所以四边形MEBF是平行四边形,则BE∥MF.因为BE⊄平面PDF,MF⊂平面PDF,所以BE∥平面PFD.选②③,证明①.取线段PD的中点M,连接ME,FM.因为E为线段PC的中点,所以ME∥CD,ME=CD.因为FB∥CD,所以ME∥FB,即平面MEBF∩平面PDF=FM.因为BE∥平面PFD,所以BE∥MF,所以四边形MEBF是平行四边形,则BF=ME.因为ME=CD=AB,所以BF=AB,即F是AB的中点.选①③,证明②.取线段CD的中点N,连接BN,EN,所以DN∥FB,且DN=FB,即四边形BFDN是平行四边形,则BN∥DF.因为BN⊄平面PDF,DF⊂平面PDF,所以BN∥平面PDF.因为BE∥平面PDF,BN∩BE=B,所以平面PDF∥平面BEN.又EN⊂平面BNE,所以EN∥平面PDF.因为EN⊂平面PDC,平面PDC∩平面PDF=DP,所以EN∥PD.因为N是线段CD的中点,所以E是线段PC的中点.2.(1)证明过点E作EE'⊥AB于点E',过点F作FF'⊥BC于点F',连接E'F'.∵底面ABCD是边长为8的正方形,△EAB,△FBC均为正三角形,且它们所在的平面都与平面ABCD垂直, ∴EE'⊥平面ABCD,FF'⊥平面ABCD,且EE'=FF',∴四边形EE'F'F是平行四边形,则EF∥E'F'.∵E'F'⊂平面ABCD,EF⊄平面ABCD,∴EF∥平面ABCD.(2)解过点G,H分别作GG'⊥CD,HH'⊥DA,交CD,DA于点G',H',连接F'G',G'H',H'E',AC.由(1)及题意可知,G',H'分别为CD,DA的中点,EFGH-E'F'G'H'为长方体,故该包装盒由一个长方体和四个相等的四棱锥组合而成.∵底面ABCD是边长为8的正方形,∴AC==8(cm),E'F'=H'E'=AC=4(cm),EE'=AEsin60°=4(cm),∴该包装盒的容积为V=VEFGH-E'F'G'H'+4VA-EE'H'H=E'F'×E'H'×EE'+4××SEE'H'H×AC=4×4×4+4××4×4×2(cm3).3.(1)证明如图,连接PA,PM,AM,∵△ABC为等边三角形,M为EF的中点,∴EF⊥AM,EF⊥PM.∵PM∩AM=M,∴EF⊥平面PMA.∵E,F分别为AB,AC边的中点,∴EF∥BC,∴BC⊥平面PMA.∵A∈BE,A∈CF,∴A∈平面PBE,A∈平面PCF,∴PA即为平面PBE与平面PCF的交线l,∴l⊂平面PMA,∵BC⊥平面PMA,∴l⊥BC.(2)解∵EF⊂平面AEF,EF⊥平面PMA,∴平面PMA⊥平面AEF.∴点P到底面AEF的距离即为点P到AM的距离,设点P到AM的距离为h,∵∠PMA=,∴h=PMsin,∴四棱锥P-BCFE的体积V=×(1+2)×.4.(1)证明取AD的中点O,连接PO,CO.因为DE=EA=,即PA=PD=, 所以AD⊥PO.因为∠APD=90°,所以DO=DA=×2=1.因为∠CDE=90°,∠PDA=45°,所以∠ADC=45°.又CD=,所以AD⊥CO.因为PO∩CO=O,PO⊂平面POC,CO⊂平面POC,所以AD⊥平面POC.因为PC⊂平面POC,所以AD⊥PC.(2)解因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PO⊂平面PAD,PO⊥AD,所以PO⊥平面ABCD.又CD=,则AB=BC=1.则VP-BCD=S△BCD·PO=×BC×AB×PO=.因为PC=,则△PCD是正三角形,所以S△PCD=·PC2=.设点B到平面PCD的距离为h,由VB-PCD=VP-BCD,得h=,得h=,即点B到平面PCD的距离为.
相关试卷
这是一份2024年高考数学重难点突破讲义:第7练 空间中的平行与垂直问题,共4页。
这是一份考点巩固卷17 空间中的平行与垂直(八大考点)-备战2024年高考数学一轮复习高分突破(新高考通用),文件包含考点巩固卷17空间中的平行与垂直八大考点原卷版docx、考点巩固卷17空间中的平行与垂直八大考点解析版docx等2份试卷配套教学资源,其中试卷共83页, 欢迎下载使用。
这是一份2023届高考数学二轮复习专题二立体几何_第1讲平行与垂直作业含答案,共9页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。