终身会员
搜索
    上传资料 赚现金

    2023南阳高三上学期1月期末考试数学(理)含解析

    立即下载
    加入资料篮
    2023南阳高三上学期1月期末考试数学(理)含解析第1页
    2023南阳高三上学期1月期末考试数学(理)含解析第2页
    2023南阳高三上学期1月期末考试数学(理)含解析第3页
    还剩8页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023南阳高三上学期1月期末考试数学(理)含解析

    展开

    这是一份2023南阳高三上学期1月期末考试数学(理)含解析,共11页。试卷主要包含了本试卷分第I卷两部分,保持卷面清洁,不折叠、不破损,设f,对于函数,,下列说法正确的是等内容,欢迎下载使用。


    2022年秋期高中三年级期终质量评估

    数学试题(理)

    注意事项:

    1.本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分.考生做题时将答案答在答题卡的指定位置上,在本试卷上答题无效

    2.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上.

    3.选择题答案使用2B铅笔填涂,非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚.

    4.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.

    5.保持卷面清洁,不折叠、不破损.

    I卷选择题(共60分)

    一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)

    1.若集合,则=(   

    A.[-13] B C.(02] D.(03]

    2.已知复数z满足,则   

    A1 B C D2

    3.从3456四个数中任取三个数作为三角形的三边长,则构成的三角形是锐角三角形的概率是(   

    A B C D

    4.已知向量,则向量在向量方向上的投影是(   

    A B.-1 C1 D

    5.已知,若,则pq的(   

    A.充分不必要条件  B.必要不充分条件

    C.充要条件  D.既不充分也不必要条件

    6.已知双曲线的左、右焦点分别为MC的右支上,直线C的左支交于点N,若,且,则双曲线C的渐近线方程为(   

    A B C D

    7.设fx)是定义在上且周期为4的奇函数,当时,,令gx)=fx)+fx1),则函数ygx)的最大值为(   

    A1 B.-1 C2 D.-2

    8.已知函数上单调递增,且恒成立,则的值为(   

    A2 B C1 D

    9.已知抛物线的焦点为F,过点F作直线l交抛物线C于点ABAx轴上方),与抛物线准线交于点M.若|BM|2|BF|,则直线l的倾斜角为(   

    A60° B30°或150° C30° D60°或120°

    10.对于函数,下列说法正确的是(   

    A.函数fx)有唯一的极大值点 B.函数fx)有唯一的极小值点

    C.函数fx)有最大值没有最小值 D.函数fx)有最小值没有最大值

    11.如图为“杨辉三角”示意图,已知每一行的数字之和构成的数列为等比数列且记该数列前n项和为,设,将数列中的整数项依次取出组成新的数列记为,则的值为(   

    A5052 B5057 C5058 D5063

    12.十七世纪法国数学家、被誉为业余数学家之王的皮埃尔·德·费马提出的一个著名的几何问题:“已知一个三角形,求作一点,使其与这个三角形的三个顶点的距离之和最小”它的答案是:当三角形的三个角均小于120时,所求的点为三角形的正等角中心,即该点与三角形的三个顶点的连线两两成角120°;当三角形有一内角大于或等于120°时,所求点为三角形最大内角的顶点.在费马问题中所求的点称为费马点.已知abc分别是三个内角ABC的对边,且,若点P的费马点,则   

    A.-6 B.-4 C.-3 D.-2

    二、填空题(本大题共4小题,全科免费下载公众号《高中僧课堂每小题5分,共20分)

    13.上级将5名农业技术员分派去3个村指导农作物种植技术,要求每村至少去一人,一人只能去一个村,则不同的分派种数有______.(数字作答)

    14.如图,△ABC内接于椭圆,其中A与椭圆右顶点重合,边BC过椭圆中心O,若AC边上中线BM恰好过椭圆右焦点F,则该椭圆的离心率为______

    15.《九章算术》是《算经十书》中最重要的一部,全书总结了战国、泰、汉时期的数学成就,内容十分丰富,在数学史上有其独到的成就.在《九章算术》中,将四个面都是直角三角形的四面体称之为“鳖臑”,将底面为长方形且有一条侧棱与底面垂直的四棱锥称为“阳马”.如图,几何体PABCD为一个阳马,其中平面ABCD,若,且PDAD2AB4,则几何体EFGABCD的外接球表面积为______

    16.已知函数的值域为,则实数m取值范围为______

    三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步聚)

    17.(本题满分12分)

    已知数列是各项均为正数的等差数列,是其前n项和,且

    1)求数列的通项公式;

    2)若,求取得最大值时的n

    18.(本题满分12分)

    2022年卡塔尔世界杯亚洲区预选赛十二强赛中,中国男足以136负进9球失19球的成绩惨败出局.甲、乙足球爱好者决定加强训练提高球技,两人轮流进行定位球训练(每人各踢一次为一轮),在相同的条件下,每轮甲、乙两人在同一位置,一人踢球另一人扑球,甲先踢,每人踢一次球,两人有1人进球另一人不进球,进球者得1分,不进球者得-1分;两人都进球或都不进球,两人均得0分,设甲每次踢球命中的概率为,乙每次踢球命中的概率为,甲扑到乙踢出球的概率为,乙扑到甲踢出球的概率,且各次踢球互不影响,

    1)经过一轮踢球,记甲的得分为X,求X的分布列及数学期望;

    2)若经过两轮踢球,用表示经过第2轮踢球后甲累计得分高于乙累计得分的概率,求

    19.(本题满分12分)

    如图,四棱锥PABCD的底面为直角梯形,PB⊥底面ABCD,设平面PAD与平面PBC的交线为l

    1)证明:l⊥平面PAB

    2)设Ql上的动点,求PD与平面QAB所成角的正弦值的最大值.

    20.(本题满分12分)

    已知函数

    1)当a1时,求证:

    2)若函数fx)有且只有一个零点,求实数a的取值范围.

    21.(本题满分12分)

    已知椭圆,离心率为,其左右焦点分别为,点A1,-1)在椭圆内,P为椭圆上一个动点,且的最大值为5

    1)求椭圆C的方程;

    2)在椭圆C的上半部分取两点MN(不包含椭圆左右端点),且,求四边形的面积.

    选考题:共10分.请考生在第2223两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.

    22.【选修44:坐标系与参数方程】(10分)

    在平面直角坐标系xOy中,曲线C的参数方程为为参数),

    1)在以O为极点,x轴的正半轴为极轴的极坐标系中,求曲线C极坐标方程;

    2)若点AB为曲线C上的两个点且,求证:为定值.

    23.【选修45:不等式选讲】(10分)

    已知存在,使得成立,a

    1)求a2b的取值范围;

    2)求的最小值.

    2022年秋期高中三年级期终质量评估数学(理)

    参考答案

    一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)

    题号

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    答案

    A

    B

    A

    B

    B

    D

    A

    D

    D

    A

    B

    C

    二、填空题(本大题共4小题,每小题5分,共20分)

    13150    14  15    16

    三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)

    17.【解析】

    1)当时,,解得:或者

    因为,故

    方法一:因为,所以

    即可得

    方法二:当时,,易得:

    因为数列是等差数列,故

    2)由(1)知,,故

    时,

    时,

    n>7时,

    故数列的最大项为8

    18.【解析】

    1)记一轮踢球,甲进球为事件A,乙进球为事件BAB相互独立,

    由题意得:

    甲的得分X的可能取值为-101

     

    所以的分布列为:

    0

    1

    P

    所以

    2)根据题意,经过第2轮踢球累计得分后甲得分高于乙得分的情况有三种;

    分别是:甲两轮中第1轮得0分,第2轮得1分;

    或者甲第1轮得1分,第2轮得0分;

    或者甲两轮各得1分,

    于是:

    19.【解析】

    1)证明:因为底面,所以

    又底面为直角梯形,且,所以

    因此平面

    因为平面

    所以平面

    又由题平面与平面的交线为

    所以,故平面

    2)以为坐标原点,的方向为轴正方向,建立如图所示的空间直角坐标系

    由(1)可设,则.设是平面的法向量,

    ,即,可取

    所以

    与平面所成角为

    因此:当时,可得(当且仅当时等号成立)

    又当时,易知不符合题意.

    所以与平面所成角的正弦值的最大值为

    20.【解析】(1

    fx)在(01)上是单调增加的,在(1,+∞)上是单调减少的.

    所以,即

    2)当a0时,,不存在零点

    时,由

    ,则

    ,易知上是单调减少的,且

    上是单调增加的,在上是单调减少的.

    由于且当时,

    故若函数有且只有一个零点,则只须

    即当时,函数有且只有一个零点.

    21【解析】

    1)由题意知:,即

    又由椭圆定义可得:

    ,且

    故可得:

    即椭圆:的方程为:

    2)延长交椭圆于点,由

    根据椭圆的对称性可得

    .显然,

    设直线的方程为

    联立得,

    ,得

    ①②③得,

    得直线的方程为,即

    到直线的距离为

    则由距离公式得:

    又由弦长公式得:

    代入上式得

    设四边形的面积为

    易知

    【选做题】

    22.【解析】

    1)因为

    所以曲线的直角坐标方程为

    因为

    所以,曲线的极坐标方程为:

    2)由于,故可设

    所以

    为定值

    23.【解析】

    1)由题知:

    因为存在,使得,所以只需

    的取值范围是

    2)方法一:

    由(1)知,因为,不妨设

    时,

    时,有

    整理得,,此时的最小值为

    综上:的最小值为

    方法二:

    ,不妨设

    因为,所以,所以:

    的最小值为


     

    相关试卷

    2024成都树德中学高三上学期期末考试数学(理)含解析:

    这是一份2024成都树德中学高三上学期期末考试数学(理)含解析,共31页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024成都石室中学高三上学期期末考试数学(理)含解析:

    这是一份2024成都石室中学高三上学期期末考试数学(理)含解析,共17页。试卷主要包含了若复数满足等内容,欢迎下载使用。

    2024西宁大通县高三上学期期末考试数学(理)图片版含解析:

    这是一份2024西宁大通县高三上学期期末考试数学(理)图片版含解析,文件包含青海省西宁市大通县2023-2024学年高三上学期期末考试数学理科答案pdf、青海省西宁市大通县2023-2024学年高三上学期期末考试数学理科doc等2份试卷配套教学资源,其中试卷共7页, 欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2023南阳高三上学期1月期末考试数学(理)含解析
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map