|试卷下载
搜索
    上传资料 赚现金
    四川省雅安市2022-2023学年高三数学(理)上学期第一次诊断性考试(一模)试题(Word版附解析)
    立即下载
    加入资料篮
    四川省雅安市2022-2023学年高三数学(理)上学期第一次诊断性考试(一模)试题(Word版附解析)01
    四川省雅安市2022-2023学年高三数学(理)上学期第一次诊断性考试(一模)试题(Word版附解析)02
    四川省雅安市2022-2023学年高三数学(理)上学期第一次诊断性考试(一模)试题(Word版附解析)03
    还剩21页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    四川省雅安市2022-2023学年高三数学(理)上学期第一次诊断性考试(一模)试题(Word版附解析)

    展开
    这是一份四川省雅安市2022-2023学年高三数学(理)上学期第一次诊断性考试(一模)试题(Word版附解析),共24页。

    秘密★启用前【考试时间:2022 年 12 月27 日 15:00-17:00】
    雅安市高2020级第一次诊断性考试
    数学(理工类)
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.
    3.考试结束后,将本试卷和答题卡一并交回.
    一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
    1. 已知,是虚数单位,若与互为共轭复数,则( )
    A. B. C. D.
    【答案】C
    【解析】
    【分析】根据共轭复数的概念可求得的值,进而根据复数的乘法运算即可求得结果.
    【详解】由已知可得,所以.
    故选:C.
    2. 已知集合,,则( )
    A. B. C. D.
    【答案】A
    【解析】
    【分析】求出集合,根据并集的运算即可求出结果.
    【详解】解可得,,所以,
    所以.
    故选:A.
    3. 采购经理指数(PMI),是通过对企业采购经理的月度调查结果统计汇总、编制而成的指数,它涵盖了企业采购、生产、流通等各个环节,包括制造业和非制造业领域,是国际上通用的检测宏观经济走势的先行指数之一,具有较强的预测、预警作用.制造业PMI高于时,反映制造业较上月扩张;低于,则反映制造业较上月收缩.下图为我国2021年1月—2022年6月制造业采购经理指数(PMI)统计图.

    根据统计图分析,下列结论最恰当的一项为( )
    A. 2021年第二、三季度的各月制造业在逐月收缩
    B. 2021年第四季度各月制造业在逐月扩张
    C. 2022年1月至4月制造业逐月收缩
    D. 2022年6月PMI重回临界点以上,制造业景气水平呈恢复性扩张
    【答案】D
    【解析】
    【分析】根据题意,将各个月的制造业指数与比较,即可得到答案.
    【详解】对于A项,由统计图可以得到,只有9月份的制造业指数低于,故A项错误;
    对于B项,由统计图可以得到,10月份制造业指数低于,故B项错误;
    对于C项,由统计图可以得到,1、2月份的制造业指数高于,故C项错误;
    对于D项,由统计图可以得到,从4月份的制造业指数呈现上升趋势,且在2022年6月PMI超过,故D项正确.
    故选:D.
    4. 已知函数,则的图象( )
    A. 关于直线对称 B. 关于点对称 C. 关于直线对称 D. 关于原点对称
    【答案】A
    【解析】
    【分析】求出以及的表达式,根据函数的对称性,即可判断各项,得到结果.
    【详解】对于A项,由已知可得,,
    所以的图象关于直线对称,故A项正确;
    对于B项,因为,则,故B项错误;
    对于C项,,则,故C错误;
    对于D项,因为,则,故D错误.
    故选:A.
    【点睛】设的定义域为.
    对于,若恒成立,则的图象关于直线对称;
    对于,若恒成立,则的图象关于点对称.
    5. 党的二十大报告既鼓舞人心,又催人奋进.为学习贯彻党的二十大精神,某宣讲小分队将5名宣讲员分配到4个社区,每个宣讲员只分配到1个社区,每个社区至少分配1名宣讲员,则不同的分配方案共有( )
    A. 480种 B. 240种 C. 120种 D. 60种
    【答案】B
    【解析】
    【分析】先选出2人为1组有种,再将4组人员分配到4个社区有,根据分步计数原理,即可求出结果.
    【详解】5名宣讲员分配到4个社区,每个社区至少1人,则分配方式为1,1,1,2,
    先选出2人为1组有种,再将4组人员分配到4个社区有,
    所以不同的分配方案共有.
    故选:B.
    6. 函数在区间上的图象大致为( )
    A. B. C. D.
    【答案】B
    【解析】
    【分析】根据函数的奇偶性以及函数值的符号分析判断.
    【详解】∵,
    ∴奇函数,图象关于原点对称,C、D错误;
    又∵若时,,
    当时,,当时,,
    ∴当时,,当时,,A错误,B正确;
    故选:B.
    7. 已知,则的值为( )
    A. B. C. D.
    【答案】D
    【解析】
    【分析】以为整体,利用诱导公式和二倍角的余弦公式运算求解.
    【详解】∵,
    故选:D.
    8. 如图所示的形状出现在南宋数学家杨辉所著的《详解九章算术·商功》中,后人称为“三角垛”.“三角垛”最上层有1个球,第二层有3个球,第三层有6个球,….如图所示的程序框图,输出的S即为小球总数,则( )

    A. 35 B. 56 C. 84 D. 120
    【答案】B
    【解析】
    【分析】设第层小球个数为,根据程序框图可知,输出的,求出各个数即可得到.
    【详解】设第层小球个数为,由题意可知,.
    根据程序框图可知,输出的,
    又,,,,,,
    所以.
    故选:B.
    9. 过抛物线的焦点F且倾斜角为锐角的直线与C交于两点A,B(横坐标分别为,,点A在第一象限),为C的准线,过点A与垂直的直线与相交于点M.若,则( )
    A. 3 B. 6 C. 9 D. 12
    【答案】C
    【解析】
    【分析】由已知可求得直线的斜率为,则直线的方程为,联立直线与抛物线的方程,可求出,,即可解得结果.
    【详解】设直线的斜率为,倾斜角为,.

    由抛物线的定义知,,又,所以为等边三角形,且轴,所以,则.
    ,则直线的方程为,
    联立直线的方程与抛物线的方程,可得,
    解得,,显然,所以,,
    所以,.
    故选:C.
    10. 如图,在长方体中,底面ABCD为正方形,E,F分别为,CD的中点,直线BE与平面所成角为,给出下列结论:

    ①平面; ②;
    ③异面直线BE与所成角为; ④三棱锥的体积为长方体体积的.
    其中,所有正确结论的序号是( )
    A. ①②③ B. ①②④ C. ②③④ D. ①②③④
    【答案】D
    【解析】
    【分析】取中点为,可证明平面平面,根据面面平行的性质即可判断①;可证明平面,即可判断②;可证明四边形是平行四边形,即可得到,进而可得即等于所求角,求出该角即可判断③;以为底,即可求出三棱锥的体积,进而判断④.
    【详解】
    取中点为,连结.
    对于①,因为分别是的中点,所以,,
    因为平面,平面,所以平面,
    同理,平面.
    因为,平面,平面,,所以平面平面,
    又平面,所以平面,所以①正确;
    对于②,由已知可得四边形是正方形,,
    又平面,平面,所以,
    因为平面,平面,,所以平面,
    又平面,所以,故②正确;
    对于③,取中点为,连结.
    因为,,,,所以,所以且,
    所以四边形是平行四边形,则,所以异面直线BE与所成角即等于直线与所成角,
    因为直线BE与平面所成角为,平面,所以,所以,设,则,则,
    所以为等边三角形,所以,故③正确;
    对于④,设长方体体积为,则.
    因为平面,则,故④正确.
    故①②③④正确.
    故选:D.
    11. 已知椭圆左焦点为,离心率为,直线与C交于点M,N,且,.当取最小值时,椭圆C的离心率为( )
    A. B. C. D.
    【答案】B
    【解析】
    【分析】根据直线和椭圆的对称性可得为平行四边形,再由及向量的数量积可求,再应用基本不等式,取等条件计算即可.
    【详解】因为直线与C交于点M,N,
    设为的中点,由为的中点,故四边形为平行四边形.

    则,由椭圆定义得
    设因为,所以,又因
    所以,,
    在中, ,应用余弦定理

    所以,又因为,所以

    当且仅当,即时取最小值,此时,


    故选: .
    12. 设,,,则a,b,c的大小关系是( )
    A. B. C. D.
    【答案】D
    【解析】
    【分析】构建,求导,利用导数判断单调性,结合单调性可证,再构建,求导,利用导数判断单调性,结合单调性可证,再证,即可得.
    【详解】构建,则,
    当时,则,故在上单调递增,
    ∵,则,即,
    ∴,即,
    构建,则,
    当时,则,故在上单调递减,
    ∵,则,即,
    ∴,
    又∵,则,
    ∴,故,即,
    综上所述:.
    故选:D.
    【点睛】关键点点睛:
    ①若证,构建,结合导数分析判断;
    ②若证,构建,结合导数分析判断,并根据题意适当放缩证明.
    二、填空题:本题共4小题,每小题5分,共20分.
    13. 若x,y满足约束条件,则的最大值为______.
    【答案】8
    【解析】
    【分析】作出可行域,通过平行确定的最大值.
    【详解】如图,作出不等式组所表示的平面区域,
    联立方程,解得,即,
    由,即表示斜率,横截距为的直线,
    通过平移可得当直线过点C时,横截距最大,即最大,故.
    故答案为:8.

    14. 已知向量,,则向量与向量的夹角为______.
    【答案】##
    【解析】
    【分析】根据数量积的坐标表示求夹角即可得到.
    详解】由已知可得,,,,
    则由可得,,
    所以,向量与向量的夹角为.
    故答案为:.
    15. 若函数的最小正周期为,则满足条件“是偶函数”的的一个值为______(写出一个满足条件的即可).
    【答案】(答案不唯一,也可以写,,符合,即可)
    【解析】
    【分析】化简可得,又根据周期可得,即可得到,根据偶函数可得,.
    【详解】,
    又的最小正周期为,所以,则,所以,
    所以.
    又因为是偶函数,所以应满足,,
    所以有,.
    故答案为:.
    16. 已知O是边长为3的正三角形ABC的中心,点P是平面ABC外一点,平面ABC,二面角的大小为60°,则三棱锥外接球的表面积为______.
    【答案】
    【解析】
    【分析】根据题意分析可得二面角的平面角为,进而可得相关长度,再结合球的性质可得,可得球的半径,即可得结果.
    【详解】∵O是正三角形ABC的中心,则,
    ∴,
    取的中点,连接,则,即二面角的平面角为,
    由正三角形ABC的边长为3,则,
    三棱锥为正三棱锥,则三棱锥的外接球的球心在直线上,设三棱锥的外接球的半径为,
    ∵,则,解得,
    ∴三棱锥外接球的表面积.
    故答案为:.

    【点睛】结论点睛:球的相关性质:
    ①球的截面均为圆面;
    ②球心与截面圆心的连线垂直于该截面.
    三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生依据要求作答.
    (一)必考题:共60分.
    17. 某企业为改进生产,现 某产品及成本相关数据进行统计.现收集了该产品的成本费y(单位:万元/吨)及同批次产品生产数量x(单位:吨)的20组数据.现分别用两种模型①,②进行拟合,据收集到的数据,计算得到如下值:







    14.5

    0.08
    665
    0.04
    -450
    4
    表中,.
    若用刻画回归效果,得到模型①、②的值分别为,.
    (1)利用和比较模型①、②的拟合效果,应选择哪个模型?并说明理由;
    (2)根据(1)中所选择的模型,求y关于x的回归方程;并求同批次产品生产数量为25(吨)时y的预报值.
    附:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘法估计分别为,.
    【答案】(1)选择模型②,理由见解析;
    (2)6.
    【解析】
    【分析】(1)根据已知,根据的意义,即可得出模型②的拟合效果好,选择模型②;
    (2)与可用线性回归来拟合,有,求出系数,得到回归方程,即可得到成本费与同批次产品生产数量的回归方程为,代入,即可求出结果.
    【小问1详解】
    应该选择模型②.
    由题意可知,,则模型②中样本数据的残差平方和比模型①中样本数据的残差平方和小,即模型②拟合效果好.
    【小问2详解】
    由已知,成本费与可用线性回归来拟合,有.
    由已知可得,,
    所以,
    则关于的线性回归方程为.
    成本费与同批次产品生产数量的回归方程为,
    当(吨)时,(万元/吨).
    所以,同批次产品生产数量为25(吨)时y的预报值为6万元/吨.
    18. 已知为等差数列,且,.
    (1)求数列的通项公式;
    (2)若数列满足:,求前n项和.
    【答案】(1)
    (2)
    【解析】
    【分析】(1)根据等差数列的定义和通项公式运算求解;(2)先根据前n项和与通项之间的关系求得,可得为等比数列,利用等比数列的前n项和公式运算求解.
    【小问1详解】
    设数列的公差为,
    ∵,则,即,
    ∴,
    故数列的通项公式.
    【小问2详解】
    ∵,
    当时,则;
    当时,则,
    两式相减得,则;
    综上所述:.
    又∵,故数列是以首项,公比的等比数列,
    ∴数列的前n项和.
    19. 已知的内角A,B,C所对的边分别为a,b,c从下列三个条件中选择一个并解答问题:
    ①;②;
    ③.
    (1)求角A的大小;
    (2)若,且的面积为,求的周长.
    注:如果选择多个条件分别解答,按第一个解答计分.
    【答案】(1);
    (2).
    【解析】
    【分析】(1)如选择①,由已知可得,根据正弦定理以及两角和的正弦公式的逆用,即可得出,进而求出;如选择②,由已知可得,根据正弦定理以及两角和的正弦公式,即可得出,利用辅助角公式可得,根据角的范围即可求出;如选择③,由余弦定理可得,,化简即有,进而求出,即可求出;
    (2)根据三角形的面积公式即可求出,根据余弦定理即可求出,进而即可得到的周长.
    【小问1详解】
    如选择①,有,
    即,
    由正弦定理可得,,
    又,所以,
    因为,所以.
    如选择②,由可得,,
    由正弦定理可得,,
    又,
    所以,又,
    所以,即,
    所以.
    因为,所以,所以,解得.
    如选择③,.
    由余弦定理可得,,
    整理可得,,所以.
    因为,所以.
    【小问2详解】
    由(1)知,,又,且的面积为,
    所以有,解得,
    由余弦定理可得,,
    所以,
    所以的周长.
    20. 如图,四棱锥的底面是矩形,底面ABCD,.

    (1)试在棱BC上确定一点M,使得平面平面,并说明理由.
    (2)在第(1)问的条件下,求二面角的余弦值.
    【答案】(1)答案见详解;
    (2).
    【解析】
    【分析】(1)当为棱上靠近点的三等分点时,根据三角形相似,可推出,即,进而证明平面,从而得到面面垂直;
    (2)以点为原点建立空间直角坐标系,求得各点坐标,求出平面的法向量以及平面的法向量,再根据图形判断二面角为锐角,即可求出结果.
    【小问1详解】
    当为棱上靠近点的三等分点时,平面平面.
    证明:若为棱上靠近点的三等分点,, 所以.
    又,,所以∽.
    所以.
    又,所以,所以.
    因为底面ABCD,平面ABCD,所以.
    因平面,平面,,所以平面.
    又平面,所以平面平面.
    【小问2详解】

    由(1),连结,以点为原点,分别以所在的直线为轴,如图建立空间直角坐标系,设,则,,,,.
    ,,.
    设平面的法向量为,则,即,
    令,则.
    设平面的法向量为,则,即,
    取,则.
    则,
    显然二面角为锐角,所以二面角的余弦值为.
    21. 已知函数.
    (1)若是的极小值点,求a的取值范围;
    (2)若,,求a的取值范围.
    【答案】(1);
    (2).
    【解析】
    【分析】(1)求导可得,然后分为、进行分类讨论,当时,导函数有两个解,对两个解的大小关系进行讨论,即可得到a的取值范围;
    (2)当时,可知恒成立,则单调递增,只需即可,代入得到的范围.当时,由(1)知,当时,取得极小值,也即为最小值.根据题意,只需满足,整理即可得到关于的不等式,求解即可得到.
    【小问1详解】
    由已知可得,定义域为R.
    .
    ①当,则恒成立,解可得,
    解,可得;解,可得.
    显然是的极小值点,满足条件.
    ②当时,解可得,.
    (ⅰ)当,即时,解,可得或;
    解,可得.此时是的极小值点,满足条件;
    (ⅱ)当,即时,恒成立,无极值点;
    (ⅲ)当,即时,解,可得或;
    解,可得.此时是的极大值点,与已知不符.
    综上所述,a的取值范围为.
    【小问2详解】
    由(1)知,,
    因为,所以,
    ①当时,可知恒成立,则单调递增.
    故时,,所以,满足条件.
    ②当时,可知时,,单调递减;时,,单调递增.
    所以,在区间上,当时,取得极小值,也即为最小值.
    由于,恒成立,
    则,
    即有,整理可得,
    因为,,所以有,解得.
    综上所述,a的取值范围为.
    【点睛】求解不等式在区间上恒成立问题,常常转化为求解函数的最值问题:即借助导函数得到函数的单调性,研究函数的极值、最值,列出关系式,即可求得参数的范围.
    (二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题记分.
    [选修4—4:坐标系与参数方程]
    22. 在直角坐标系中,直线l的参数方程为(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C的极坐标方程为,直线l与曲线C相交于A,B两点,.
    (1)求曲线C的直角坐标方程;
    (2)若,求直线l的斜率.
    【答案】(1)
    (2)
    【解析】
    【分析】(1)根据极坐标与直角坐标直角的转化,运算求解;(2)联立直线l的参数方程和曲线C的直角坐标方程,根据参数的几何意义结合韦达定理运算求解.
    【小问1详解】
    ∵,则,
    ∴,即,
    故曲线C的直角坐标方程为.
    【小问2详解】
    将直线l的参数方程为(t为参数)代入曲线C的直角坐标方程为,得,
    整理得,
    设A,B两点所对应的参数为,则,
    ∵,则,
    联立,解得,
    将代入得,解得,
    故直线l的斜率为.
    [选修4—5:不等式选讲]
    23. 已知,,且.
    (1)证明:;
    (2)若不等式对任意恒成立,求m的取值范围.
    【答案】(1)证明见详解
    (2)
    【解析】
    【分析】(1)根据题意可得,代入运算整理,结合二次函数的对称性求最值;(2)根据题意分析可得,结合和运算求解.
    【小问1详解】
    ∵,则,可得,
    ∴,
    又∵开口向上,对称轴为,
    ∴当时,,当时,,
    故.
    【小问2详解】
    ∵,当且仅当,即时等号成立;
    ∴,
    又∵,当且仅当时等号成立,
    ∴,解得或,
    故m的取值范围为.
    相关试卷

    四川省遂宁市2024届高三上学期第一次诊断性考试数学(理)试题(Word版附答案): 这是一份四川省遂宁市2024届高三上学期第一次诊断性考试数学(理)试题(Word版附答案),共10页。

    四川省成都市2022-2023学年高三数学(理)上学期1月第一次诊断性考试试卷(Word版附解析): 这是一份四川省成都市2022-2023学年高三数学(理)上学期1月第一次诊断性考试试卷(Word版附解析),共10页。试卷主要包含了单项选择题.,填空题,解答题等内容,欢迎下载使用。

    四川省广安市2022-2023学年高三数学(理)上学期第一次诊断性考试试题(Word版附答案): 这是一份四川省广安市2022-2023学年高三数学(理)上学期第一次诊断性考试试题(Word版附答案),共9页。试卷主要包含了选择题,三季度的各月制造业在逐月收缩,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map