3.8极值点、拐点偏移问题(精讲)-【题型·技巧培优系列】最新高考数学大一轮复习精讲精练(新高考地区)
展开
这是一份3.8极值点、拐点偏移问题(精讲)-【题型·技巧培优系列】最新高考数学大一轮复习精讲精练(新高考地区),文件包含38极值点拐点偏移问题精讲-题型·技巧培优系列最新高考数学大一轮复习精讲精练新高考地区解析版docx、38极值点拐点偏移问题精讲-题型·技巧培优系列最新高考数学大一轮复习精讲精练新高考地区原卷版docx等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。
3.8极值点、拐点偏移问题
【题型解读】
【知识储备】
一、极值点偏移的含义
函数f(x)满足内任意自变量x都有f(x)=f(2m-x),则函数f(x)关于直线x=m对称.可以理解为函数f(x)在对称轴两侧,函数值变化快慢相同,且若f(x)为单峰函数,则x=m必为f(x)的极值点x0,如图(1)所示,函数f(x)图象的顶点的横坐标就是极值点x0,若f(x)=c的两根的中点则刚好满足=x0,则极值点在两根的正中间,也就是极值点没有偏移.
图(1) 图(2) 图(3)
若≠x0,则极值点偏移.若单峰函数f(x)的极值点为x0,且函数f(x)满足定义域内x=m左侧的任意自变量x都有f(x)>f(2m-x)或f(x)2x0型,构造函数F(x)=f(x)-f(2x0-x)或F(x)=f(x0+x)-f(x0-x);对结论x1x2>x型,构造函数F(x)=f(x)-f ,通过研究F(x)的单调性获得不等式.
(3)判断单调性,即利用导数讨论F(x)的单调性.
(4)比较大小,即判断函数F(x)在某段区间上的正负,并得出f(x)与f(2x0-x)的大小关系.
(5)转化,即利用函数f(x)的单调性,将f(x)与f(2x0-x)的大小关系转化为x与2x0-x之间的关系,进而得到所证或所求.
若要证明f′的符号问题,还需进一步讨论与x0的大小,得出所在的单调区间,从而得出该处导数值的正负.
2.比(差)值代换法
比(差)值换元的目的也是消参、减元,就是根据已知条件首先建立极值点之间的关系,然后利用两个极值点之比(差)作为变量,从而实现消参、减元的目的.设法用比值或差值(一般用t表示)表示两个极值点,即t=,化为单变量的函数不等式,继而将所求解问题转化为关于t的函数问题求解.
3.对数均值不等式法
两个正数和的对数平均定义:
对数平均与算术平均、几何平均的大小关系:(此式记为对数平均不等式)
取等条件:当且仅当时,等号成立.
只证:当时,.不失一般性,可设.证明如下:
(1)先证: ①
不等式①
构造函数,则.
因为时,,所以函数在上单调递减,
故,从而不等式①成立;
(2)再证: ②
不等式②
构造函数,则.
因为时,,所以函数在上单调递增,
故,从而不等式②成立;
综合(1)(2)知,对,都有对数平均不等式成立,当且仅当时,等号成立.
【题型精讲】
【题型一 极值点偏移解法赏析】
例1 (2022·山东济南历城二中高三月考)已知函数f(x)=xe-x(x∈R).
(1)求函数f(x)的单调区间和极值;
(2)若x1≠x2,且f(x1)=f(x2),求证:x1+x2>2.
【解析】 (1)f′(x)=e-x(1-x),令f′(x)>0得x2,即证x1>2-x2,由(1)可设00对x∈(1,+∞)恒成立.
由F′(x)=f′(x)+f′(2-x)=e-x(1-x)+ex-2(x-1)=(x-1)(ex-2-e-x),
∵当x>1时,x-1>0,ex-2-e-x>0,∴F′(x)>0,
则F(x)在(1,+∞)上单调递增,所以F(x)>F(1)>0,
即已证明F(x)>0对x∈(1,+∞)恒成立,故原不等式x1+x2>2亦成立.
方法二 (比值换元法)
设00,
设g(t)=ln t- (t>1),∴g′(t)=-=>0,
∴当t>1时,g(t)为增函数,∴g(t)>g(1)=0,∴ln t->0,故x1+x2>2.
方法三 (对数均值不等式法)
设0
相关试卷
这是一份4.4ω的最值范围问题(精练)-【题型·技巧培优系列】最新高考数学大一轮复习精讲精练(新高考地区),文件包含44ω的最值范围问题精练-题型·技巧培优系列最新高考数学大一轮复习精讲精练新高考地区解析版docx、44ω的最值范围问题精练-题型·技巧培优系列最新高考数学大一轮复习精讲精练新高考地区原卷版docx等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。
这是一份4.4ω的最值范围问题(精讲)-【题型·技巧培优系列】最新高考数学大一轮复习精讲精练(新高考地区),文件包含44ω的最值范围问题精讲-题型·技巧培优系列最新高考数学大一轮复习精讲精练新高考地区解析版docx、44ω的最值范围问题精讲-题型·技巧培优系列最新高考数学大一轮复习精讲精练新高考地区原卷版docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。
这是一份3.8极值点、拐点偏移问题(精练)-【题型·技巧培优系列】最新高考数学大一轮复习精讲精练(新高考地区),文件包含38极值点拐点偏移问题精练-题型·技巧培优系列最新高考数学大一轮复习精讲精练新高考地区解析版docx、38极值点拐点偏移问题精练-题型·技巧培优系列最新高考数学大一轮复习精讲精练新高考地区原卷版docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。