3.7利用导数研究函数零点(精讲)-【题型·技巧培优系列】最新高考数学大一轮复习精讲精练(新高考地区)
展开
这是一份3.7利用导数研究函数零点(精讲)-【题型·技巧培优系列】最新高考数学大一轮复习精讲精练(新高考地区),文件包含37利用导数研究函数零点精讲-题型·技巧培优系列最新高考数学大一轮复习精讲精练新高考地区解析版docx、37利用导数研究函数零点精讲-题型·技巧培优系列最新高考数学大一轮复习精讲精练新高考地区原卷版docx等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。
3.7利用导数研究函数零点
【题型解读】
【知识储备】
对于函数零点问题,其解题策略一般是转化为两个函数图象的交点.
对于两个函数的选择,有3种情况:一平一曲,一斜一曲,两曲(凸性一般要相反).其中以一平一曲的情况最为常见.
分离参数法是处理零点问题的常见方法,其本质是选择一平一曲两个函数;部分题目直接考虑函数的图象与轴的交点情况,其本质是选择一平一曲两个函数;部分题目利用零点存在性定理并结合函数的单调性处理零点,其本质是选择一平一曲两个函数.
1.下凸函数定义
设函数为定义在区间上的函数,若对上任意两点,,总有,当且仅当时取等号,则称为上的下凸函数.
2.上凸函数定义
设函数为定义在区间上的函数,若对上任意两点,,总有,当且仅当时取等号,则称为上的上凸函数.
【题型精讲】
【题型一 零点的个数问题】
方法技巧 零点的个数问题
讨论函数零点的个数,可先利用函数的导数,判断函数的单调性,进一步讨论函数的取值情况,根据零点存在定理判断(证明)零点的存在性,确定函数零点的个数.
例1 (2022·山东济南历城二中高三月考)已知函数f(x)=x3-a(x2+x+1).
(1)若a=3,求f(x)的单调区间;
(2)证明:f(x)只有一个零点.
【解析】 (1)当a=3时,f(x)=x3-3x2-3x-3,f′(x)=x2-6x-3.令f′(x)=0解得x=3-2或x=3+2.
当x∈(-∞,3-2)∪(3+2,+∞)时,f′(x)>0;当x∈(3-2,3+2)时,f′(x)0,所以f(x)=0等价于-3a=0.
设g(x)=-3a,则g′(x)=≥0,仅当x=0时g′(x)=0,
所以g(x)在(-∞,+∞)单调递增.故g(x)至多有一个零点,
从而f(x)至多有一个零点.又f(3a-1)=-6a2+2a-=-6-0,
故f(x)有一个零点.综上,f(x)只有一个零点.
【题型精练】
1.(2022·天津·崇化中学期末)已知函数f(x)=ln x+-,a∈R且a≠0.
(1)讨论函数f(x)的单调性;
(2)当x∈时,试判断函数g(x)=(ln x-1)ex+x-m的零点个数.
【解析】 (1)f′(x)=(x>0),当a0恒成立,∴函数f(x)在(0,+∞)上单调递增;
当a>0时,由f′(x)>0,得x>;由f′(x)1,∴a==
相关试卷
这是一份3.7利用导数研究函数零点(精练)-【题型·技巧培优系列】最新高考数学大一轮复习精讲精练(新高考地区),文件包含37利用导数研究函数零点精练-题型·技巧培优系列最新高考数学大一轮复习精讲精练新高考地区解析版docx、37利用导数研究函数零点精练-题型·技巧培优系列最新高考数学大一轮复习精讲精练新高考地区原卷版docx等2份试卷配套教学资源,其中试卷共13页, 欢迎下载使用。
这是一份3.6利用导数研究不等式恒(能)成立问题(精练)-【题型·技巧培优系列】最新高考数学大一轮复习精讲精练(新高考地区),文件包含36利用导数研究不等式恒能成立问题精练-题型·技巧培优系列最新高考数学大一轮复习精讲精练新高考地区解析版docx、36利用导数研究不等式恒能成立问题精练-题型·技巧培优系列最新高考数学大一轮复习精讲精练新高考地区原卷版docx等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。
这是一份3.6利用导数研究不等式恒(能)成立问题(精讲)-【题型·技巧培优系列】最新高考数学大一轮复习精讲精练(新高考地区),文件包含36利用导数研究不等式恒能成立问题精讲-题型·技巧培优系列最新高考数学大一轮复习精讲精练新高考地区解析版docx、36利用导数研究不等式恒能成立问题精讲-题型·技巧培优系列最新高考数学大一轮复习精讲精练新高考地区原卷版docx等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。