广东省广州市天河区2022年八年级上学期期末数学试卷及答案
展开
这是一份广东省广州市天河区2022年八年级上学期期末数学试卷及答案,共10页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
八年级上学期期末数学试题一、单选题1.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )A. B. C. D.2.在下列长度的三条线段中,能围成三角形的是( )A.2,3,4 B.2,3,5 C.3,5,9 D.8,4,43.如果一个多边形的内角和等于720°,则它的边数为( ) A.3 B.4 C.5 D.64.下列运算中正确的是( )A.2a3﹣a3=2 B.2a3•a4=2a7C.(2a3)2=4a5 D.a8÷a2=a45.在△ABC中,∠C=90°,∠A=60°,AC=2.则AB的长为( )A.1 B.2 C.3 D.46.分式的值为0,则y的值是( )A.5 B. C.﹣5 D.07.若x2+kx+16能写成一个多项式的平方形式,则k的值为( )A.±8 B.8 C.±4 D.48.如图,AE∥DF,AE=DF.添加下列的一个选项后.仍然不能证明△ACE≌△DBF的是( )A.AB=CD B.EC=BF C.∠E=∠F D.EC∥BF9.如图,在 中, 的垂直平分线交 于点D, 平分 ,若 ,则 的度数为( ) A. B. C. D.10.如图,△ABC和△ADE是等腰直角三角形,且∠BAC=∠DAE=90°,BD,CE交于点F,连接AF.则下列结论错误的是( )A.BD=CE B.BD⊥CE C.AF平分∠CAD D.∠AFE=45°二、填空题11.已知点P的坐标为(﹣2,3).则它关于y轴对称的点P'的坐标是 .12.已知x+y=6,xy=7,则x2y+xy2的值是 .13.如图,已知△ABC≌△DEF,∠B=57°,∠D=77°,则∠F= .14.(a2)﹣1(a﹣1b)3= .15.等腰三角形的一个角是70°,则它的另外两个角的度数是 .16.若(x+m)与(x+3)的乘积中不含x的一次项,则m= .三、解答题17.计算:a÷b×.18.计算:(x+1)(x﹣1)﹣.19.如图,在平面直角坐标系中,每个小正方形的边长均为1,点A的坐标为(﹣2,3).点B的坐标为(﹣3,1),点C的坐标为(1,﹣2).⑴作出△ABC关于y轴对称的△A'B'C'.其中A',B',C'分别是A,B,C的对应点,不要求写作法;⑵在x轴上找一点P,使得PB+PA的值最小.(不要求写作法)20.先化简,再求值:已知(+)÷,其中x满足x2+2x﹣5=0.21.如图,在△ABC中,∠C=90°,点D,点E在边BC上,且满足AD=BD,AE平分∠BAD,若∠CAE=42°.求∠AEC和∠B的度数.22.某校组织八年级学生外出去博物馆参观,一部分学生步行,一部分学生骑车.已知骑车的路程是12km.而步行路程是骑车路程的.若骑车的速度是步行学生速度的2倍,且骑车时间比步行所需时间少用20分钟,求骑车的平均速度.23.如图,在四边形ABCD中,∠B=∠C= 90°,AB>CD,AD=AB+CD.(1)利用尺规作∠ADC的平分线DE,交BC于点E,连接AE. (保留作图痕迹,不写作法)(2)在(1)的条件下,求证:AE⊥DE.24.某地产公司为了吸引年轻人购房,持推出“主房+多变入户花园”的两种户型.即在图1中边长为a米的正方形主房进行改造.户型一是在主房两侧均加长b米(0<9b<a).阴影部分作为入户花园,如图2所示.户型二是在主房一边减少b米后,另一边再增加b米,阴影部分作为入户花园.如图3所示.解答下列问题:(1)设两种户型的主房面积差为M,入户花园的面积差为N,试比较M和N的大小.(2)若户型一的总价为50万元,户型二的总价为40万元,试判断哪种户型单价较低,并说明理由.25.如图1,△ABC中,AB=AC,∠BAC=90°,点D是线段BC上一个动点,点F在线段AB上,且∠FDB=∠ACB,BE⊥DF.垂足E在DF的延长线上.(1)如图2,当点D与点C重合时,试探究线段BE和DF的数量关系.并证明你的结论;(2)若点D不与点B,C重合,试探究线段BE和DF的数量关系,并证明你的结论.
答案解析部分1.【答案】B2.【答案】A3.【答案】D4.【答案】B5.【答案】D6.【答案】C7.【答案】A8.【答案】B9.【答案】B10.【答案】C11.【答案】(2,3)12.【答案】4213.【答案】46°14.【答案】15.【答案】55°,55°或70°,40°16.【答案】﹣317.【答案】解:a÷b×= =.18.【答案】解:(x+1)(x﹣1)﹣=﹣1﹣﹣4x﹣4=﹣4x﹣5.19.【答案】解:⑴如图,△A'B'C'即为所求作.⑵如图,点P即为所求作.20.【答案】解:(+)÷=()÷==(x﹣1)(x+3)=x2+2x﹣3,∵x2+2x﹣5=0,∴x2+2x=5,则原式=5﹣3=2.21.【答案】解:∵∠C=90°,∠CAE=42°,∴∠AEC=90°﹣∠CAE=48°,∵AE平分∠BAD,∴∠DAE=∠BAE,设∠DAE=x,∵AD=BD,∴∠DAB=∠B=2x,∴∠AEC=∠B+∠BAE=3x∴3x=48°,∴x=16°,∴∠B=2x=32°.22.【答案】解:设步行学生的速度是x千米/小时,则骑车的平均速度是2x千米/小时,12×=8,依题意得:,解得:x=6,经检验:x=6是所列方程的解,且符合题意,则2x=12,答:骑车学生的平均速度是12千米/小时.23.【答案】(1)解:如图,线段DE,AE即为所求.(2)证明:在DA上截取DH=CD,连接HE,由(1)知∠HDE=∠CDE,在HDE与CDE中, ,∴HDE≌CDE(SAS),∴∠DHE=∠C=90°,∠DEH=∠DEC,∴∠AHE=180°-∠DHE=90°,∵∠B=90°,∴∠AHE=∠B=90°,∵AD=AH+DH=AB+CD,DH=CD,∴AH=AB,在RtAEG和RtAEB中,,∴RtAEH≌RtAEB(HL),∴∠AEH=∠AEB,∵∠DEG+∠AEG+∠DEC+∠AEB=180°,∴2(∠DEG+∠AEG)=180°,∴∠DEG+∠AEG=90°,即∠AED=90°,∴AE⊥DE.24.【答案】(1)解:∵M=a2﹣a(a﹣b)=a2﹣a2+ab=ab,N=(a+b)2﹣a2﹣b(a﹣b)=a2+2ab+b2﹣a2﹣ab+b2=ab+2b2,∴M﹣N=ab﹣(ab+2b2)=﹣2b2,∵9b>0,∴﹣2b2<0,∴M﹣N<0,∴M<N;(2)解:户型一的单价为:万元,户型二的单价为:万元,∴∵0<9b<a,∴a﹣9b>0,a﹣b>0,∴>0,∴户型二的单价较低.25.【答案】(1)解:如图,延长CA与BE交于点G,∵∠FDB=∠ACB,∴∠EDG=∠ACB,∴∠BDE=∠EDG,即CE是∠BCG的平分线,又∵BE⊥DE,∴BE=EG=BG,∵∠BED=∠BAD=90°,∠BFE=∠CFA,∴∠EBF=∠ACF,即∠ABG=∠ACF,在△ABG和△ACF中,,∴△ABG≌△ACF(ASA),∴BG=CF=FD,又∵BE=BG,∴BE=FD.(2)解:BE=FD,理由如下:如图,过点D作DG∥AC,与AB交于H,与BE的延长线交于G,,∵DG∥AC,∠BAC=90°,∴∠BDG=∠C,∠BHD=∠BHG=∠BAC=90°,又∵∠BDE=∠ACB,∴∠EDG=∠BDG﹣∠BDE=∠C﹣∠C=∠C,∴∠BDE=∠EDG,在△DEB和△DEG中,,∴△DEB≌△DEG(ASA),∴BE=EG=BG,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=∠GDB,∴HB=HD,∵∠BED=∠BHD=90°,∠BFE=∠DFH,∴∠EBF=∠HDF,即∠HBG=∠HDF,在△BGH和△DFH中,,∴△BGH≌△DFH(ASA),∴BG=FD,又∵BE=BG,∴BE=FD.
相关试卷
这是一份+广东省广州市天河区2023-2024学年八年级上学期期末数学试卷+,共20页。试卷主要包含了选择题,多选题,填空题,计算题,解答题等内容,欢迎下载使用。
这是一份广东省广州市天河区第一一三中学2023-2024学年八年级上学期期中数学试卷,共48页。
这是一份广东省广州市天河区天河外国语学校2022-2023学年八年级上学期期末检测数学试卷(无答案),共5页。试卷主要包含了选择题,多选题,填空题,解答题等内容,欢迎下载使用。