人教版《一元一次方程的应用》之基础练习(带答案)
展开第6讲 一元一次方程的实际应用
中考内容 | 中考要求 | ||
A | B | C | |
方程 | 了解方程是描述现实世界数量关系的有效模型;了解方程的解的意义;会由方程的解求方程中待定系数的值;了解估计方程解的过程 | 掌握等式的基本性质;能根据具体问题中的数量关系列出方程;能根据具体问题的实际意义,检验方程的解是否合理 | 运用方程与不等式的有关内容解决有关问题 |
一元一次方程 | 了解一元一次方程的有关概念 | 能解一元一次方程 |
1和差倍分问题
一. 列方程解应用题的步骤:
1. 审:审题,分析题中已知什么,求什么,明确各数量之间关系;
2. 设:设未知数(一般求什么,就设什么为);
3. 找:找出能够表示应用题全部意义的一个相等关系;
4. 列:根据这个相等关系列出需要的代数式,进而列出方程;
5. 解:解所列出的方程,求出未知数的值;
6. 答:检验所求解是否符合题意,写出答案(包括单位名称).
二. 设未知数的方法:
1. 直接设未知数:指题目问什么就设什么,它多适用于要求的未知数只有一个的情况;
2. 间接设未知数:指所设的不是所求的,而解得的间接未知数对确定所求的量起中介作用;
3. 引入辅助未知数:为了使题目中的数量关系更加明确,可以引进辅助未知数帮助建立方程.
4. 辅助未知数往往不需要求出,可以在解题时消去.
三. 和差倍分类常用关系式:
1. 比多,则;
2. 比少,则;
3. 是的倍,则;
4. 是的,则.
【例】(2018•朝阳区模拟)保护和管理好湿地,对于维护一个城市生态平衡具有十分重要的意义.2018年北京计划恢复湿地和计划新增湿地的面积共2200公顷,其中计划恢复湿地面积比计划新增湿地面积的2倍多400公顷.求计划恢复湿地和计划新增湿地的面积.
【例】(2018•长清区一模)春节期间,某超市出售的荔枝和芒果,单价分别为每千克26元和22元,李叔叔购买这两种水果共30千克,共花了708元,请问李叔叔购买这两种水果各多少千克?
【练习】(2017秋•朝阳区期末)某学校为表彰在“庆祝党的十九大胜利召开”主题绘画比赛中表现突出的同学,购买了30支水彩笔和40本笔记本,共用1360元,每本笔记本的价格比每支水彩笔的价格贵6元.每支水彩笔的价格是多少元?
2工程问题
1. 工程问题的基本量有:工作量、工作效率、工作时间,三者的关系式为:
①工作量=工作效率×工作时间;
②工作时间=;
③工作效率=.
2. 工程问题中,一般常将全部工作量看作整体,如果完成全部工作的时间为,则工作效率为
【例】(2017秋•建昌县期末)某项工作,甲单独做要6天完成,乙单独做要12天完成,若甲、乙合作完成此项工作,求多少天可以完成?(列一元一次方程求解)
【练习】(2017秋•崆峒区期末)某工作甲单独做需15h完成,乙单独做需12h完成,若甲先单独做1小时,之后乙再单独做4h,剩下的工作由甲、乙两人一起做.问:再做几小时可以完成全部工作?
【练习】(2017秋•鞍山期末)一项工程,甲单独做12小时完成,乙单独做8小时完成,甲先单独做9小时,后因甲由其他任务调离,余下的任务由乙单独完成,那么乙还要多少小时完成?
【练习】(2017秋•沾化区期末)一项工作,甲单独做8天完成,乙单独做12天完成.现甲、乙合做2天后,甲因事离去,由乙单独做,则乙还要几天才能完成这项工作?
【练习】(2017秋•江阴市期末)某制衣厂计划若于天完成一批服装的订货任务.如果每天生产服装50套,则差30套而不能完成任务;如果每天生产服装60套,则可提前1天完成任务,且超额20套,问这批服装的订货任务有多少套?计划多少天完成?
3行程问题—相遇
一. 行程问题中的三个基本量及其关系:
路程速度时间: .
时间路程速度:.
速度路程时间:.
(其中为路程,为速度,为时间)
二. 相遇问题:快行距慢行距原距:.
(快速慢速)时间距离: .
【例】(2017秋•李沧区期末)甲、乙两站相距300千米,一列慢车从甲站开往乙站,每小时行40千米,一列快车从乙站开往甲站,每小时行80千米,已知慢车先行1.5小时,快车再开出,则快车开出多少小时后与慢车相遇?
【练习】(2017秋•辽阳期末)列方程解应用题
甲、乙两人同时从相距25千米的A地去B地,甲骑车乙步行,甲的速度是乙的速度的3倍,甲到达B地停留40分钟,然后从B地返回A地,在途中遇见乙,这时距他们出发的时间恰好3小时,求两人的速度各是多少?
【练习】(2017秋•安图县期末)甲、乙两地相距200km,快车速度为120km/h,慢车速度为80km/h,慢车从甲地出发,快车从乙地出发.
(1)如果两车同时出发,相向而行,出发后几时两车相遇?相遇时离甲地多远?
(2)如果两车同时出发,同向(从乙开始向甲方向)而行,出发后几时两车相遇?
【练习】(2017秋•东莞市期末)甲、乙两站相距510千米,一列慢车从甲站开往乙站,速度为45千米/时,慢车行驶两小时后,另有一列快车从乙站开往甲站,速度为60千米/时,
(1)快车开出几小时后与慢车相遇?
(2)相遇时快车距离甲站多少千米?
【例】(2017秋•岐山县期末)甲乙两人同时从A地前往相距25.5千米的B地,甲骑自行车,乙步行,甲的速度比乙的速度的2倍还快2千米/时,甲先到达B地后,立即由B地沿原路返回.在途中遇到乙,这时距他们出发时间刚好为3小时,求两人的速度.
【例】(2017秋•沂水县期末)由甲地到乙地前三分之二的路是高速公路,后三分之一的路是普通公路,高速公路和普通公路交界处是丙地,A车在高速公路和普通公路的行驶速度都是80千米/时;B车在高速公路上的行驶速度是100千米/时,在普通公路上的行驶速度是70千米/时,A、B两车分别从甲、乙两地同时出发相向行驶,在高速公路上距离丙地40千米处相遇,求甲、乙两地之间的距离是多少?
【练习】(2017秋•莘县期末)一辆客车以每小时30千米的速度从甲地出发驶向乙地,经过45分钟,一辆货车以每小时比客车快10千米的速度从乙地出发驶向甲地.若两车刚好在甲、乙两地的中点相遇,求甲、乙两地的距离.
4行程问题—追及
一. 行程问题中的三个基本量及其关系:
路程速度时间: .
时间路程速度:.
速度路程时间:.
(其中为路程,为速度,为时间)
二. 追及问题:快行距慢行距原距:.
(快速慢速)时间距离:.
【例】(2017秋•市南区期末)甲、乙两人从A地出发前往B地,甲出发2小时后,乙开始出发,已知甲的速度是15km/h,乙的速度是60km/h,A,B两地相距100km,乙追上甲的地方离B地多远?
【例】(2017秋•东明县期末)小毅和小明同时从学校出发沿同一路线到科技馆参加活动,小毅每小时走6千米,小明每小时走8千米,走了1小时后,小明忘带材料返回学校取材料,立即按原路去追小毅.
(1)小明返回到学校时,小毅离学校多远?
(2)小明从返回到学校要多长时间能追上小毅?
【练习】(2017秋•建平县期末)甲、乙两人在300米环形跑道上练习长跑,甲的速度是6米/秒,乙的速度是7米/秒.
(1)如果甲、乙两人同地背向跑,乙先跑2秒,再经过多少秒两人相遇?
(2)如果甲、乙两人同地同向跑,乙跑几圈后能首次追上甲?
【例】(2017秋•永新县期末)某中学学生步行到郊外旅行.七年级(1)班学生组成前对,步行速度为4千米/时,七(2)班的学生组成后队,速度为6千米/时;前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回联络,他骑车的速度为10千米/时.
(1)后队追上前队需要多长时间?
(2)后队追上前队时间内,联络员走的路程是多少?
(3)两队何时相距2千米?
综合练习
一.选择题(共3小题)
1.如图,电子蚂蚁P、Q在边长为1个单位长度的正方形ABCD的边上运动,电子蚂蚁P从点A出发,以个单位长度/秒的速度绕正方形作顺时针运动,电子蚂蚁Q从点A出发,以个单位长度秒的速度绕正方形作逆时针运动,则它们第2019次相遇在( )
A.点A B.点B C.点C D.点D
2.已知某座桥长800米,现有一列火车从桥上通过,测得火车从开始上桥到完全通过共用了1分钟,这列火车完全在桥上的时间为40秒,则火车的速度和车长分别是( )
A.20米/秒,200米 B.18米/秒,180米
C.16米/秒,160米 D.15米/秒,150米
3.在2019年1月份的月历表中,任意框出表中竖列上三个相邻的数(如图,如框出了10,17,24),则这三个数的和可能的是( )
A.21 B.27 C.50 D.75
二.填空题(共1小题)
4.春节假期,小陈驾车从珠海出发到香港,去时在港珠澳大桥上用了40分钟,返回时平均速度提高了25千米/小时,在港珠澳大桥上的用时比去时少了10分钟,求小陈去时的平均速度,设他去时驾车的平均速度为x千米/小时,则可列方程为 .
三.解答题(共3小题)
5.甲、乙两人在400米的环形跑道上进行早锻炼,甲慢跑速度为105米/分,乙步行速度为25米/分,两人同时同地同向出发,经过多少时间,两人第一次相遇?(请列一元一次方程求解)
6.用A4纸在某眷印社复印文件,复印页数不超过20时,每页收费1元;复印页数超过20时,超过部分每页收费降为0.4元,在某图书馆复印同样的文件,不论复印多少页,每页收费0.8元,当复印的张数超过20页时,请问答以下问题.
(1)复印张数为多少页时,某眷印社与某图书馆的收费相同?
(2)如何选择更省钱?
7.小邢和小华相约放学后去公园跑步,她们一起以4km/h的速度从学校出发,走了15分钟后小邢发现忘了带作业,就以5km/h的速度回学校去拿,到达学校后,又用了6分钟取作业,之后便以同样的速度去追赶小华,结果在距公园3km处追上了小华,试求学校与公园的距离.