资料中包含下列文件,点击文件名可预览资料内容
还剩4页未读,
继续阅读
所属成套资源:最新核心考点突破九年级数学精选专题培优讲与练 人教版
成套系列资料,整套一键下载
- 培优专题04 一元二次方程的实际问题分类-【核心考点突破】2022-2023学年九年级数学上册精选专题培优讲与练(人教版) 试卷 4 次下载
- 培优专题05 确定二次函数解析式的8种方法-【核心考点突破】2022-2023学年九年级数学上册精选专题培优讲与练(人教版) 试卷 4 次下载
- 培优专题08 一次函数与二次函数在利润中的综合应用-【核心考点突破】2022-2023学年九年级数学上册精选专题培优讲与练(人教版) 试卷 2 次下载
- 培优专题09 二次函数的综合--线段、周长和面积问题-【核心考点突破】2022-2023学年九年级数学上册精选专题培优讲与练(人教版) 试卷 1 次下载
- 培优专题10 二次函数的综合--特殊图形的存在性问题-【核心考点突破】2022-2023学年九年级数学上册精选专题培优讲与练(人教版) 试卷 1 次下载
培优专题06 二次函数的图像与字母系数的关系-【核心考点突破】2022-2023学年九年级数学上册精选专题培优讲与练(人教版)
展开这是一份培优专题06 二次函数的图像与字母系数的关系-【核心考点突破】2022-2023学年九年级数学上册精选专题培优讲与练(人教版),文件包含培优专题06二次函数的图像与字母系数的关系-解析版docx、培优专题06二次函数的图像与字母系数的关系-原卷版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
培优专题06二次函数的图像与字母系数的关系
二次函数图象的特征与a,b,c的关系
字母的符号
图象的特征
a
a>0
开口向上
a<0
开口向下
b
b=0
对称轴为y轴
ab>0(a与b同号)
对称轴在y轴左侧
ab<0(a与b异号)
对称轴在y轴右侧
c
c=0
经过原点
c>0
与y轴正半轴相交
c<0
与y轴负半轴相交
b2–4ac
b2–4ac=0
与x轴有唯一交点(顶点)
b2–4ac>0
与x轴有两个交点
b2–4ac<0
与x轴没有交点
常用公式及方法:
(1) 二次函数三种表达式:
表达式
顶点坐标
对称轴
一般式
顶点式
交点式
(2) 韦达定理:若二次函数图象与x轴有两个交点且交点坐标为(,0)和(,0),则,。
(3) 赋值法:在二次函数中,令,则;令,则;令,则;令,则;利用图象上对应点的位置来判断含有、、的关系式的正确性。
1.(2022·湖南株洲·中考真题)已知二次函数,其中、,则该函数的图象可能为( )
A.B.C. D.
【答案】C
【分析】利用排除法,由得出抛物线与y轴的交点应该在y轴的负半轴上,排除A选项和D选项,根据B选项和C选项中对称轴,得出,抛物线开口向下,排除B选项,即可得出C为正确答案.
【详解】解:对于二次函数,
令,则,
∴抛物线与y轴的交点坐标为
∵,
∴,
∴抛物线与y轴的交点应该在y轴的负半轴上,
∴可以排除A选项和D选项;
B选项和C选项中,抛物线的对称轴,
∵ ,
∴,
∴抛物线开口向下,可以排除B选项,
故选C.
【点睛】本题考查二次函数的图象的性质,熟练掌握二次函数图象与三个系数之间的关系是解题的关键.
2.(2022·湖北黄石·中考真题)已知二次函数的部分图象如图所示,对称轴为直线,有以下结论:①;②若t为任意实数,则有;③当图象经过点时,方程的两根为,(),则,其中,正确结论的个数是( )
A.0 B.1 C.2 D.3
【答案】D
【分析】利用抛物线开口方向得到a>0,利用抛物线的对称轴方程得到,利用抛物线与y轴的交点位置得到c<0,则可对①进行判断;利用二次函数当x=-1时有最小值可对②进行判断;由于二次函数与直线y=3的一个交点为(1,3),利用对称性得到二次函数y=ax2+bx+c与直线y=3的另一个交点为(-3,3),从而得到x1=-3,x2=1,则可对③进行判断.
【详解】∵抛物线开口向上,
∴,
∵抛物线的对称轴为直线,即,
∴,
∵抛物线与y轴的交点在x轴下方,
∴,
∴,所以①正确;
∵时,y有最小值,
∴(t为任意实数),即,所以②正确;
∵图象经过点时,代入解析式可得,
方程可化为,消a可得方程的两根为,,
∵抛物线的对称轴为直线,
∴二次函数与直线的另一个交点为,
,代入可得,
所以③正确.
综上所述,正确的个数是3.
故选D.
【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).
3.(2019·内蒙古通辽·中考真题)在平面直角坐标系中,二次函数的图象如图所示,现给以下结论:①;②;③;④为实数;⑤.
其中错误结论的个数有( )
A.个 B.个 C.个 D.个
【答案】A
【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行一一分析判断.
【详解】解:①由抛物线可知:,,
对称轴,
,
,故①正确;
②由对称轴可知:,
,
时,,
,
,故②正确;
③关于的对称点为,
时,,故③正确;
④当时,的最小值为,
时,,
,
即,故④错误;
⑤抛物线与轴有两个交点,
,
即,
,故⑤正确;
故选:A.
【点睛】主要考查图象与二次函数系数之间的关系,解题的关键是掌握根的判别式以及数形结合的思想.
4.(2021·湖北襄阳·中考真题)一次函数的图象如图所示,则二次函数的图象可能是( )
A.B.C.D.
【答案】D
【分析】根据一次函数图像经过的象限以及与坐标轴的交点可知:,由此可知二次函数开口方向,坐标轴情况,依此判断即可.
【详解】解:观察一次函数图像可知,
∴二次函数开口向下,
对称轴,
故选:D.
【点睛】本题主要考查一次函数的图像以及二次函数的图像,根据一次函数图像经过的象限以及与坐标轴的交点情况判断a、b的正负是解题的关键.
5.(2020·四川宜宾·中考真题)函数的图象与x轴交于点(2,0),顶点坐标为(-1,n),其中,以下结论正确的是( )
①;
②函数在处的函数值相等;
③函数的图象与的函数图象总有两个不同的交点;
④函数在内既有最大值又有最小值.
A.①③ B.①②③ C.①④ D.②③④
【答案】C
【分析】根据题意作出函数图像,根据系数与图像的关系即可求解.
【详解】如图,根据题意作图,
故a<0,b<0,c>0
∴,①正确;
∵对称轴为x=-1
∴函数在处的函数值相等,故②错误;
图中函数的图象与的函数图象无交点,故③错误;
当时,x=-1时,函数有最大值
x=3时,函数有最小值,故④正确;
故选C.
【点睛】此题主要考查二次函数的图像与性质,解题的关键是根据题意画出函数大致图像进行求解.
6.(2022·四川绵阳·中考真题)如图,二次函数的图象关于直线对称,与x轴交于,两点,若,则下列四个结论:①,②,③,④.
正确结论的个数为( )
A.1个 B.2个 C.3个 D.4个
【答案】B
【分析】根据二次函数的对称性,即可判断①;由开口方向和对称轴即可判断②;根据抛物线与x轴的交点已经x=-1时的函数的取值,即可判断③;根据抛物线的开口方向、对称轴,与y轴的交点以及a-b+c<0,即可判断④.
【详解】∵对称轴为直线x=1,-2
∵ = 1,
∴b=- 2а,
∴3a+2b= 3a-4a= -a,
∵a>0,
∴3a+2b<0,②错误;
∵抛物线与x轴有两个交点,
∴b2 - 4ac > 0,根据题意可知x=-1时,y<0,
∴a-b+c<0,
∴a+c ∵a>0,
∴b=-2a<0,
∴a+c<0,
∴b2 -4ac > a+ c,
∴b2>a+c+4ac,③正确;
∵抛物线开口向上,与y轴的交点在x轴下方,
∴a>0,c<0,
∴a>c,
∵a-b+c<0,b=-2a,
∴3a+c<0,
∴c<-3a,
∴b=–2a,
∴b>c,以④错误;
故选B
【点睛】本题主要考查图象与二次函数系数之间的关系,解题的关键是掌握数形结合思想的应用,注意掌握二次函数图象与系数的关系,掌握二次函数的对称性.
7.(2021·山东东营·中考真题)一次函数与二次函数在同一平面直角坐标系中的图象可能是( )
A.B.C. D.
【答案】C
【分析】逐一分析四个选项,根据二次函数图象的开口方向以及对称轴与y轴的位置关系,即可得出a、b的正负性,由此即可得出一次函数图象经过的象限,即可得出结论.
【详解】A. ∵二次函数图象开口向下,对称轴在y轴左侧,
∴a<0,b<0,
∴一次函数图象应该过第二、三、四象限,故本选项错误;
B. ∵二次函数图象开口向上,对称轴在y轴右侧,
∴a>0,b<0,
∴一次函数图象应该过第一、三、四象限,故本选项错误;
C. ∵二次函数图象开口向下,对称轴在y轴左侧,
∴a<0,b<0,
∴一次函数图象应该过第二、三、四象限,故本选项正确;
D. ∵二次函数图象开口向下,对称轴在y轴左侧,
∴a<0,b<0,
∴一次函数图象应该过第二、三、四象限,故本选项错误.
故选C.
【点睛】本题主要考查二次函数图象与一次函数图象的综合,掌握二次函数与一次函数系数与图象的关系,是解题的关键.
8.(2021·广东深圳·中考真题)二次函数的图象与一次函数在同一平面直角坐标系中的图象可能是( )
A.B.C.D.
【答案】A
【分析】先分析二次函数的图像的开口方向即对称轴位置,而一次函数的图像恒过定点,即可得出正确选项.
【详解】二次函数的对称轴为,一次函数的图像恒过定点,所以一次函数的图像与二次函数的对称轴的交点为,只有A选项符合题意.
故选A.
【点睛】本题考查了二次函数的图像与性质、一次函数的图像与性质,解决本题的关键是能推出一次函数的图像恒过定点,本题蕴含了数形结合的思想方法等.
9.(2021·山东聊城·中考真题)已知二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+c的图象和反比例函数y=的图象在同一坐标系中大致为( )
A.B.C. D.
【答案】D
【分析】先通过二次函数的图像确定a、b、c的正负,再利用x=1代入解析式,得到a+b+c的正负即可判定两个函数的图像所在的象限,即可得出正确选项.
【详解】解:由图像可知:图像开口向下,对称轴位于y轴左侧,与y轴正半轴交于一点,
可得:
又由于当x=1时,
因此一次函数的图像经过一、二、四三个象限,反比例函数的图像位于二、四象限;
故选:D.
【点睛】本题考查了二次函数的图像与性质、一次函数的图像与性质以及反比例函数的图像与性质,解决本题的关键是能读懂题干中的二次函数图像,能根据图像确定解析式中各系数的正负,再通过各项系数的正负判定另外两个函数的图像所在的象限,本题蕴含了数形结合的思想方法等.
10.(2020·山东菏泽·中考真题)一次函数与二次函数在同一平面直角坐标系中的图象可能是( )
A.B.C.D.
【答案】B
【分析】逐一分析四个选项,根据二次函数图象的开口以及对称轴与y轴的关系即可得出a、b的正负,由此即可得出一次函数图象经过的象限,再与函数图象进行对比即可得出结论.
【详解】解:A、∵二次函数图象开口向上,对称轴在y轴右侧,
∴a>0,b<0,
∴一次函数图象应该过第一、三、四象限,A错误;
B、∵二次函数图象开口向上,对称轴在y轴左侧,
∴a>0,b>0,
∴一次函数图象应该过第一、二、三象限,B正确;
C、∵二次函数图象开口向下,对称轴在y轴右侧,
∴a<0,b>0,
∴一次函数图象应该过第一、二、四象限,C错误;
D、∵二次函数图象开口向下,对称轴在y轴左侧,
∴a<0,b<0,
∴一次函数图象应该过第二、三、四象限,D错误.
故选:B.
【点睛】本题考查了二次函数的图象以及一次函数图象与系数的关系,根据a、b的正负确定一次函数图象经过的象限是解题的关键.
11.(2020·山东泰安·中考真题)在同一平面直角坐标系内,二次函数与一次函数的图象可能是( )
A.B.C. D.
【答案】C
【分析】根据一次函数和二次函数的图象和性质,分别判断a,b的符号,利用排除法即可解答.
【详解】解:A、由一次函数图象可知,a>0,b>0,由二次函数图象可知,a>0,b<0,不符合题意;
B、由一次函数图象可知,a>0,b<0,由二次函数图象可知,a<0,b<0,不符合题意;
C、由一次函数图象可知,a>0,b<0,由二次函数图象可知,a>0,b<0,符合题意;
D、由一次函数图象可知,a<0,b=0,由二次函数图象可知,a>0,b<0,不符合题意;
故选:C.
【点睛】本题考查二次函数的图象和一次函数的图象,解题的关键是明确一次函数和二次函数的性质.
12.(2020·四川达州·中考真题)如图,直线与抛物线交于A、B两点,则的图象可能是( )
A.B.C. D.
【答案】B
【分析】根据题目所给的图像,首先判断中k>0,其次判断中a<0,b<0,c<0,再根据k、b、的符号判断中b-k<0,又a<0,c<0可判断出图像.
【详解】解:由题图像得中k>0,中a<0,b<0,c<0,
∴b-k<0,
∴函数对称轴x=<0,交x轴于负半轴,
∴当时,即,
移项得方程,
∵直线与抛物线有两个交点,
∴方程有两个不等的解,即与x轴有两个交点,
根据函数对称轴交x轴负半轴且函数图像与x轴有两个交点,
∴可判断B正确.
故选:B
【点睛】本题考查二次函数与一次函数的图象与性质,解题的关键是根据图像判断k、a、b、c的正负号,再根据二次函数与一元二次方程的关系判断出正确图像.
13.(2022·辽宁朝阳·中考真题)如图,二次函数y=ax2+bx+c(a为常数,且a≠0)的图象过点(﹣1,0),对称轴为直线x=1,且2<c<3,则下列结论正确的是( )
A.abc>0 B.3a+c>0 C.a2m2+abm≤a2+ab(m为任意实数) D.﹣1<a<﹣
【答案】D
【分析】根据二次函数的图象与系数的关系即可求出答案.
【详解】解:A.抛物线的对称轴在y轴右侧,则ab<0,而c>0,
故abc<0,不正确,不符合题意;
B.函数的对称轴为直线x=-=1,则b=-2a,
∵从图象看,当x=-1时,y=a-b+c=3a+c=0,
故不正确,不符合题意;
C.∵当x=1时,函数有最大值为y=a+b+c,
∴(m为任意实数),
∴,
∵a<0,
∴(m为任意实数)
故不正确,不符合题意;
D.∵-=1,故b=-2a,
∵x=-1,y=0,故a-b+c=0,
∴c=-3a,
∵2<c<3,
∴2<-3a<3,
∴-1<a<﹣,故正确,符合题意;
故选:D.
【点睛】本题考查二次函数的图象与性质,解题的关键是熟练运用图象与系数的关系,本题属于中等题型.
14.(2022·四川资阳·中考真题)如图是二次函数的图象,其对称轴为直线,且过点.有以下四个结论:①,②,③,④若顶点坐标为,当时,y有最大值为2、最小值为,此时m的取值范围是.其中正确结论的个数是( )
A.4个 B.3个 C.2个 D.1个
【答案】A
【分析】①:根据二次函数的对称轴,,即可判断出;
②:结合图象发现,当时,函数值大于1,代入即可判断;
③:结合图象发现,当时,函数值小于0,代入即可判断;
④:运用待定系数法求出二次函数解析式,再利用二次函数的对称性即可判断.
【详解】解:∵二次函数的图象,其对称轴为直线,且过点,
∴,,
∴,∴,故①正确;
从图中可以看出,当时,函数值大于1,因此将代入得,,即,故②正确;
∵,∴,从图中可以看出,当时,函数值小于0,
∴,∴,故③正确;
∵二次函数的顶点坐标为,
∴设二次函数的解析式为,将代入得,,
解得,
∴二次函数的解析式为,
∴当时,;
∴根据二次函数的对称性,得到,故④正确;
综上所述,①②③④均正确,故有4个正确结论,
故选A.
【点睛】本题考查了二次函数的图象和性质,待定系数法求二次函数解析式等,熟练掌握二次函数的图象和性质是本题的关键.
15.(2022·湖北荆门·中考真题)抛物线y=ax2+bx+c(a,b,c为常数)的对称轴为x=﹣2,过点(1,﹣2)和点(x0,y0),且c>0.有下列结论:①a<0;②对任意实数m都有:am2+bm≥4a﹣2b;③16a+c>4b;④若>﹣4,则>c.其中正确结论的个数为( )
A.1个 B.2个 C.3个 D.4个
【答案】B
【分析】根据抛物线y=ax2+bx+c(a,b,c为常数)的对称轴为x=﹣2,过点(1,﹣2)且c>0,即可判断开口向下,即可判断①;根据二次函数的性质即可判断②;根据抛物线的对称性即可判断③;根据抛物线的对称性以及二次函数的性质即可判断④.
【详解】∵抛物线y=ax2+bx+c(a,b,c为常数)的对称轴为x=﹣2,过点(1,﹣2),且c>0,
∴抛物线开口向下,则a<0,故①正确;
∵抛物线开口向下,对称轴为x=﹣2,
∴函数的最大值为4a﹣2b+c,
∴对任意实数m都有:am2+bm+c≤4a﹣2b+c,即am2+bm≤4a﹣2b,故②错误;
∵对称轴为x=﹣2,c>0.
∴当x=﹣4时的函数值大于0,即16a﹣4b+c>0,
∴16a+c>4b,故③正确;
∵对称轴为x=﹣2,点(0,c)的对称点为(﹣4,c),
∵抛物线开口向下,
∴若-4<<0,则>c.若≥0,则≤c,故④错误;
故选:B
【点睛】本题考查二次函数图象与系数的关系,解题关键是掌握二次函数与方程及不等式的关系,掌握二次函数的性质.
16.(2022·山东日照·中考真题)已知二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为,且经过点(-1,0).下列结论:①3a+b=0;②若点,(3,y2)是抛物线上的两点,则y1
A.1个 B.2个 C.3个 D.4个
【答案】C
【分析】由对称轴为即可判断①;根据点,(3,y2)到对称轴的距离即可判断②;由抛物线经过点(-1,0),得出a-b+c=0,对称轴,得出,代入即可判断③;根据二次函数的性质以及抛物线的对称性即可判断④.
【详解】解:∵对称轴,
∴b=-3a,
∴3a+b=0,①正确;
∵抛物线开口向上,点到对称轴的距离小于点(3,y2)的距离,
∴y1
∴a-b+c=0,
∵对称轴,
∴,
∴,
∴3c=4b,
∴4b-3c=0,故③错误;
∵对称轴,
∴点(0,c)的对称点为(3,c),
∵开口向上,
∴y≤c时,0≤x≤3.故④正确;
故选:C.
【点睛】本题考查了二次函数的性质及二次函数图象上点的坐标特征,熟知二次函数的性质是解题的关键.
17.(2022·四川广安·中考真题)已知抛物线y=ax2 +bx +c的对称轴为x=1,与x轴正半轴的交点为A(3,0),其部分图象如图所示,有下列结论:①abc >0;②2c﹣3b <0;③5a +b+2c=0;④若B(,y1)、C(,y2)、D(,y3)是抛物线上的三点,则y1
A.1 B.2 C.3 D.4
【答案】B
【分析】根据二次函数的图象与性质一一判断即可.
【详解】解:由图象可知,开口向上,图象与y轴负半轴有交点,则,,
对称轴为直线,则,
∴,故①正确;
当时,,
∵,
∴,即
∴,故②错误;
∵对称轴为直线,
∴抛物线与x轴负半轴的交点为(,0),
∴,
∵,
两式相加,则,
∴,故③错误;
∵,,,
∴,
∴根据开口向上,离对称轴越近其对应的函数值越小,则有,故④正确;
∴正确的结论有2个,
故选:B
【点睛】本题考查了二次函数的图象及性质;熟练掌握二次函数图象及性质,能够通过函数图象提取信息是解题的关键.
18.(2022·湖北恩施·中考真题)已知抛物线,当时,;当时,.下列判断:
①;②若,则;③已知点,在抛物线上,当时,;④若方程的两实数根为,,则.
其中正确的有( )个.
A.1 B.2 C.3 D.4
【答案】C
【分析】利用根的判别式可判断①;把,代入,得到不等式,即可判断②;求得抛物线的对称轴为直线x=b,利用二次函数的性质即可判断③;利用根与系数的关系即可判断④.
【详解】解:∵a=>0,开口向上,且当时,;当时,,
∴抛物线与x轴有两个不同的交点,
∴,
∴;故①正确;
∵当时,,
∴-b+c<0,即b>+c,
∵c>1,
∴b>,故②正确;
抛物线的对称轴为直线x=b,且开口向上,
当x ∴当时,;故③正确;
∵方程的两实数根为x1,x2,
∴x1+x2=2b,
∵当c>1时,b>,
∴则x1+x2>3,但当c<1时,则b未必大于,则x1+x2>3的结论不成立,
故④不正确;
综上,正确的有①②③,共3个,
故选:C.
【点睛】本题考查了二次函数的性质,一元二次方程的根的判别式以及根与系数的关系等知识,解题的关键是读懂题意,灵活运用所学知识解决问题.
相关资料
更多