所属成套资源:2020-2022近三年浙江中考数学真题及答案解析
2020-2022年浙江中考数学3年真题汇编 专题14 圆压轴题型汇总(学生卷+教师卷)
展开这是一份2020-2022年浙江中考数学3年真题汇编 专题14 圆压轴题型汇总(学生卷+教师卷),文件包含专题14圆压轴题型汇总-三年2020-2022中考数学真题分项汇编浙江专用解析版docx、专题14圆压轴题型汇总-三年2020-2022中考数学真题分项汇编浙江专用原卷版docx等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。
专题14 圆压轴题型汇总
一、单选题
1.(2020·浙江温州)如图,菱形OABC的顶点A,B,C在⊙O上,过点B作⊙O的切线交OA的延长线于点D.若⊙O的半径为1,则BD的长为( )
A.1 B.2 C. D.
【答案】D
【解析】
【分析】
连接OB,由题意可知,∠OBD=90°;再说明△OAB是等边三角形,则∠AOB =60°;再根据直角三角形的性质可得∠ODB=30°,最后解三角形即可求得BD的长.
【详解】
解:连接OB
∵菱形OABC
∴OA=AB
又∵OB=OA
∴OB=OA=AB
∴△OAB是等边三角形
∵BD是圆O的切线
∴∠OBD=90°
∴∠AOB=60°
∴∠ODB=30°
∴在Rt△ODB中,OD=2OB=2,BD=OD·sin∠ODB=2× =
故答案为D.
【点睛】
本题考查了菱形的性质、圆的切线的性质、等边三角形的判定和性质以及解直角三角形,其中证明△OAB是等边三角形是解答本题的关键.
二、填空题
2.(2022·浙江绍兴)如图,,点在射线上的动点,连接,作,,动点在延长线上,,连接,,当,时,的长是______.
【答案】5或
【解析】
【分析】
过点C作CN⊥BE于N,过点D作DM⊥CN延长线于M,连接EM,设BN=x,则CN =3x,由△ACN≌△CDM可得AN=CM=10+x,CN=DM=3x,由点C、M、D、E四点共圆可得△NME是等腰直角三角形,于是NE=10-2x,由勾股定理求得AC可得CE,在Rt△CNE中由勾股定理建立方程求得x,进而可得BE;
【详解】
解:如图,过点C作CN⊥BE于N,过点D作DM⊥CN延长线于M,连接EM,
设BN=x,则CN=BN•tan∠CBN=3x,
∵△CAD,△ECD都是等腰直角三角形,
∴CA=CD,EC=ED,∠EDC=45°,
∠CAN+∠ACN=90°,∠DCM+∠ACN=90°,则∠CAN=∠DCM,
在△ACN和△CDM中:∠CAN=∠DCM,∠ANC=∠CMD=90°,AC=CD,
∴△ACN≌△CDM(AAS),
∴AN=CM=10+x,CN=DM=3x,
∵∠CMD=∠CED=90°,
∴点C、M、D、E四点共圆,
∴∠CME=∠CDE=45°,
∵∠ENM=90°,
∴△NME是等腰直角三角形,
∴NE=NM=CM-CN=10-2x,
Rt△ANC中,AC=,
Rt△ECD中,CD=AC,CE=CD,
Rt△CNE中,CE2=CN2+NE2,
∴,
,
,
x=5或x=,
∵BE=BN+NE=x+10-2x=10-x,
∴BE=5或BE=;
故答案为:5或;
【点睛】
本题考查了三角函数,全等三角形的判定和性质,圆内接四边形的性质,勾股定理,一元二次方程等知识;此题综合性较强,正确作出辅助线是解题关键.
3.(2021·浙江嘉兴)如图,在中,,,,点从点出发沿方向运动,到达点B时停止运动,连结,点关于直线的对称点为,连接A′C,.在运动过程中,点到直线距离的最大值是_______;点到达点时,线段扫过的面积为___________.
【答案】
【解析】
【分析】
(1)通过分析点A′的运动轨迹,是以点C为圆心,CA为半径的圆上,从而求解;
(2)画出相应的图形,从而利用扇形面积和三角形面积公式计算求解
【详解】
解:(1)由题意可得点A′的运动轨迹是以点C为圆心,CA为半径的圆上,
∵点从点出发沿方向运动,到达点B时停止运动,,点关于直线的对称点为,
∴∠ACA′最大为90°
当CA′⊥AB时,点A′到直线AB的距离最大,如图
过点B作BE⊥AC
∵,,,
∴在Rt△ABE中,BE=1,AE=,
在Rt△BCE中,BE=CE=1
∴CA′=CA=
又∵CA′⊥AB
∴在Rt△ACF中,CF=
∴A′F=A′C-CF=
即点到直线距离的最大值是;
点到达点时,线段扫过的面积为:
==
故答案为:;
【点睛】
本题考查轨迹,含30°直角三角形的性质,扇形的面积等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.
三、解答题
4.(2022·浙江温州)如图1,为半圆O的直径,C为延长线上一点,切半圆于点D,,交延长线于点E,交半圆于点F,已知.点P,Q分别在线段上(不与端点重合),且满足.设.
(1)求半圆O的半径.
(2)求y关于x的函数表达式.
(3)如图2,过点P作于点R,连结.
①当为直角三角形时,求x的值.
②作点F关于的对称点,当点落在上时,求的值.
【答案】(1)
(2)
(3)①或;②
【解析】
【分析】
(1)连接OD,设半径为r,利用,得,代入计算即可;
(2)根据CP=AP十AC,用含x的代数式表示 AP的长,再由(1)计算求AC的长即可;
(3)①显然,所以分两种情形,当 时,则四边形RPQE是矩形,当 ∠PQR=90°时,过点P作PH⊥BE于点H, 则四边形PHER是矩形,分别根据图形可得答案;
②连接,由对称可知,利用三角函数表示出和BF的长度,从而解决问题.
(1)
解:如图1,连结.设半圆O的半径为r.
∵切半圆O于点D,
∴.
∵,
∴,
∴,
∴,
即,
∴,即半圆O的半径是.
(2)
由(1)得:.
∵,
∴.
∵,
∴.
(3)
①显然,所以分两种情况.
ⅰ)当时,如图2.
∵,
∴.
∵,
∴四边形为矩形,
∴.
∵,
∴,
∴.
ⅱ)当时,过点P作于点H,如图3,
则四边形是矩形,
∴.
∵,
∴.
∵,
∴,
∴,
∴,
∴,
由得:,
∴.
综上所述,x的值是或.
②如图4,连结,
由对称可知,
∵BE⊥CE,PR⊥CE,
∴PR∥BE,
∴∠EQR=∠PRQ,
∵,,
∴EQ=3-x,
∵PR∥BE,
∴,
∴,
即:,
解得:CR=x+1,
∴ER=EC-CR=3-x,
即:EQ= ER
∴∠EQR=∠ERQ=45°,
∴
∴,
∴.
∵是半圆O的直径,
∴,
∴,
∴,
∴,
∴.
【点睛】
本题是圆的综合题,主要考查了切线的性质,相似三角形的判定与性质,圆周角定理,三角函数等知识,利用三角函数表示各线段的长并运用分类讨论思想是解题的关键.
5.(2021·浙江台州)如图,BD是半径为3的⊙O的一条弦,BD=4,点A是⊙O上的一个动点(不与点B,D重合),以A,B,D为顶点作平行四边形ABCD.
(1)如图2,若点A是劣弧的中点.
①求证:平行四边形ABCD是菱形;
②求平行四边形ABCD的面积.
(2)若点A运动到优弧上,且平行四边形ABCD有一边与⊙O相切.
①求AB的长;
②直接写出平行四边形ABCD对角线所夹锐角的正切值.
【答案】①证明见解析;②;(2)①AB的长为或;②
【解析】
【分析】
(1)①利用等弧所对的弦相等可得,根据一组邻边相等的平行四边形是菱形可得证;②连接AO,交BD于点E,连接OD,根据垂径定理可得,利用勾股定理求出OE的长,即可求解;
(2)①分情况讨论当CD与相切时、当BC与相切时,利用垂径定理即可求解;②根据等面积法求出AH的长度,利用勾股定理求出DH的长度,根据正切的定义即可求解.
【详解】
解:(1)①∵点A是劣弧的中点,
∴,
∴,
∵四边形ABCD是平行四边形,
∴平行四边形ABCD是菱形;
②连接AO,交BD于点E,连接OD,
,
∵点A是劣弧的中点,OA为半径,
∴,OA平分BD,
∴,
∵平行四边形ABCD是菱形,
∴E为两对角线的交点,
在中,,
∴,
∴;
(2)①如图,当CD与相切时,连接DO并延长,交AB于点F,
∵CD与相切,
∴,
∴,
∵四边形ABCD是平行四边形,
∴,
∴,
在中,,
在中,,
∴,解得,
∴,
∴;
如图,当BC与相切时,连接BO并延长,交AD于点G,
同理可得,,
所以,
综上所述,AB的长为或;
②过点A作,
,
由(2)得:
根据等面积法可得,
解得,
在在中,,
∴,
∴.
【点睛】
本题考查垂径定理、平行四边形的判定与性质、解直角三角形等内容,掌握分类讨论的思想是解题的关键.
6.(2021·浙江金华)在扇形中,半径,点P在OA上,连结PB,将沿PB折叠得到.
(1)如图1,若,且与所在的圆相切于点B.
①求的度数.
②求AP的长.
(2)如图2,与相交于点D,若点D为的中点,且,求的长.
【答案】(1)①60°;②;(2)
【解析】
【分析】
(1)根据图像折叠的性质,确定角之间的关系,通过已知的角度来间接求所求角的角度;求的长,先连接,先在中,求出;再在中,求出即可得到答案;
(2)要求的长,扇形的半径已知,就转化成求的度数,连接,通过条件找到角之间的等量关系,再根据三角形内角和为,建立等式求出,最后利用弧长的计算公式进行计算.
【详解】
解:(1)①如图1,为圆的切线.
由题意可得,,.
,
②如图1,连结,交BP于点Q.则有.
在中,.
在中,,
.
(2)如图2.连结OD.设.
∵点D为的中点.
.
由题意可得,.
又
,,解得.
.
【点睛】
本题考查了求线段的长度和弧长的长度问题,解题的关键是:根据题目中的条件,找到边角之间的等量关系,通过等量代换的思想间接求出所需要求的量.
7.(2021·浙江宁波)如图1,四边形内接于,为直径,上存在点E,满足,连结并延长交的延长线于点F,与交于点G.
(1)若,请用含的代数式表列.
(2)如图2,连结.求证;.
(3)如图3,在(2)的条件下,连结,.
①若,求的周长.
②求的最小值.
【答案】(1);(2)见解析;(3)①;②
【解析】
【分析】
(1)利用圆周角定理求得,再根据,求得,即可得到答案;
(2)由,得到,从而推出,证得,由此得到结论;
(3)①连结.利用已知求出,证得,得到,利用中,根据正弦求出,求出EF的长,再利用中,,求出EG及DE,再利用勾股定理求出DF即可得到答案;
②过点C作于H,证明,得到,证明,得到,设,得到,利用勾股定理得到 ,求得,利用函数的最值解答即可.
【详解】
解:(1)∵为的直径,
∴,
∵,
∴,
∴.
(2)∵为的直径,
∴,
∴,
∴,
∵,
∴.
又∵,
∴,
∴.
(3)①如图,连结.
∵为的直径,
∴.
在中,,,
∴.
∵,
∴,
即,
∴.
∵,
∴.
∵在中,,
∴,
∴.
∵在中,,
∴.
在中,,
∴,
∴的周长为.
②如图,过点C作于H.
∵,
∴.
∵,
∴.
∴,
∵,
∴.
∵,
∴.
∵,
∴,
∵,
∴,
∴.
设,
∴,
∴.
在中, ,
∴,
当时,的最小值为3,
∴的最小值为.
【点睛】
此题考查圆周角的定理,弧、弦和圆心角定理,全等三角形的判定及性质,勾股定理,三角函数,相似三角形的判定,函数的最值问题,是一道综合的几何题型,综合掌握各知识点是解题的关键.
8.(2020·浙江宁波)定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.
(1)如图1,∠E是△ABC中∠A的遥望角,若∠A=α,请用含α的代数式表示∠E.
(2)如图2,四边形ABCD内接于⊙O,=,四边形ABCD的外角平分线DF交⊙O于点F,连结BF并延长交CD的延长线于点E.求证:∠BEC是△ABC中∠BAC的遥望角.
(3)如图3,在(2)的条件下,连结AE,AF,若AC是⊙O的直径.
①求∠AED的度数;
②若AB=8,CD=5,求△DEF的面积.
【答案】(1)∠E=α;(2)见解析;(3)①∠AED=45°;②
【解析】
【分析】
(1)由角平分线的定义可得出结论;
(2)由圆内接四边形的性质得出∠FDC+∠FBC=180°,得出∠FDE=∠FBC,证得∠ABF=∠FBC,证出∠ACD=∠DCT,则CE是△ABC的外角平分线,可得出结论;
(3)①连接CF,由条件得出∠BFC=∠BAC,则∠BFC=2∠BEC,得出∠BEC=∠FAD,证明△FDE≌△FDA(AAS),由全等三角形的性质得出DE=DA,则∠AED=∠DAE,得出∠ADC=90°,则可求出答案;
②过点A作AG⊥BE于点G,过点F作FM⊥CE于点M,证得△EGA∽△ADC,得出,求出,设AD=4x,AC=5x,则有(4x)2+52=(5x)2,解得x=,求出ED,CE的长,求出DM,由等腰直角三角形的性质求出FM,根据三角形的面积公式可得出答案.
【详解】
解:(1)∵BE平分∠ABC,CE平分∠ACD,
∴∠E=∠ECD﹣∠EBD=(∠ACD﹣∠ABC)=α,
(2)如图1,延长BC到点T,
∵四边形FBCD内接于⊙O,
∴∠FDC+∠FBC=180°,
又∵∠FDE+∠FDC=180°,
∴∠FDE=∠FBC,
∵DF平分∠ADE,
∴∠ADF=∠FDE,
∵∠ADF=∠ABF,
∴∠ABF=∠FBC,
∴BE是∠ABC的平分线,
∵,
∴∠ACD=∠BFD,
∵∠BFD+∠BCD=180°,∠DCT+∠BCD=180°,
∴∠DCT=∠BFD,
∴∠ACD=∠DCT,
∴CE是△ABC的外角平分线,
∴∠BEC是△ABC中∠BAC的遥望角.
(3)①如图2,连接CF,
∵∠BEC是△ABC中∠BAC的遥望角,
∴∠BAC=2∠BEC,
∵∠BFC=∠BAC,
∴∠BFC=2∠BEC,
∵∠BFC=∠BEC+∠FCE,
∴∠BEC=∠FCE,
∵∠FCE=∠FAD,
∴∠BEC=∠FAD,
又∵∠FDE=∠FDA,FD=FD,
∴△FDE≌△FDA(AAS),
∴DE=DA,
∴∠AED=∠DAE,
∵AC是⊙O的直径,
∴∠ADC=90°,
∴∠AED+∠DAE=90°,
∴∠AED=∠DAE=45°,
②如图3,过点A作AG⊥BE于点G,过点F作FM⊥CE于点M,
∵AC是⊙O的直径,
∴∠ABC=90°,
∵BE平分∠ABC,
∴∠FAC=∠EBC=∠ABC=45°,
∵∠AED=45°,
∴∠AED=∠FAC,
∵∠FED=∠FAD,
∴∠AED﹣∠FED=∠FAC﹣∠FAD,
∴∠AEG=∠CAD,
∵∠EGA=∠ADC=90°,
∴△EGA∽△ADC,
∴,
∵在Rt△ABG中,AG=,
在Rt△ADE中,AE=AD,
∴,
在Rt△ADC中,AD2+DC2=AC2,
∴设AD=4x,AC=5x,则有(4x)2+52=(5x)2,
∴x=,
∴ED=AD=,
∴CE=CD+DE=,
∵∠BEC=∠FCE,
∴FC=FE,
∵FM⊥CE,
∴EM=CE=,
∴DM=DE﹣EM=,
∵∠FDM=45°,
∴FM=DM=,
∴S△DEF=DE•FM=.
【点睛】
本题是圆的综合题,考查了角平分线的定义,圆周角定理,圆内接四边形的性质,相似三角形的判定与性质,全等三角形的判定与性质,勾股定理,等腰直角三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.
9.(2020·浙江台州)如图,在△ABC中,∠ACB=90°,将△ABC沿直线AB翻折得到△ABD,连接CD交AB于点M.E是线段CM上的点,连接BE.F是△BDE的外接圆与AD的另一个交点,连接EF,BF,
(1)求证:△BEF是直角三角形;
(2)求证:△BEF∽△BCA;
(3)当AB=6,BC=m时,在线段CM正存在点E,使得EF和AB互相平分,求m的值.
【答案】(1)见解析;(2)见解析;(3)
【解析】
【分析】
(1)想办法证明∠BEF=90°即可解决问题(也可以利用圆内接四边形的性质直接证明).
(2)根据两角对应相等两三角形相似证明.
(3)证明四边形AFBE是平行四边形,推出FJ=BD=m,EF=m,由△ABC∽△CBM,可得BM=,由△BEF∽△BCA,推出,由此构建方程求解即可.
【详解】
(1)证明:由折叠可知,∠ADB=∠ACB=90°
∵∠EFB=∠EDB,∠EBF=∠EDF,
∴∠EFB+∠EBF=∠EDB+∠EDF=∠ADB=90°,
∴∠BEF=90°,
∴△BEF是直角三角形.
(2) 证明:∵BC=BD,
∴∠BDC=∠BCD,
∵∠EFB=∠EDB,
∴∠EFB=∠BCD,
∵AC=AD,BC=BD,
∴AB⊥CD,
∴∠AMC=90°,
∵∠BCD+∠ACD=∠ACD+∠CAB=90°,
∴∠BCD=∠CAB,
∴∠BFE=∠CAB,
∵∠ACB=∠FEB=90°,
∴△BEF∽△BCA.
(3) 设EF交AB于J.连接AE,如下图所示:
∵EF与AB互相平分,
∴四边形AFBE是平行四边形,
∴∠EFA=∠FEB=90°,即EF⊥AD,
∵BD⊥AD,
∴EF∥BD,
∵AJ=JB,
∴AF=DF,
∴ FJ=
∴ EF=
∵ △ABC∽△CBM
∴ BC:MB=AB:BC
∴ BM=,
∵ △BEJ∽△BME,
∴ BE:BM=BJ:BE
∴ BE=,
∵ △BEF∽△BCA,
∴
即
解得(负根舍去).
故答案为:
【点睛】
本题属于圆综合题,考查了圆周角定理,相似三角形的判定和性质平行四边形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.
10.(2020·浙江温州)如图,C,D为⊙O上两点,且在直径AB两侧,连结CD交AB于点E,G是上一点,∠ADC=∠G.
(1)求证:∠1=∠2;
(2)点C关于DG的对称点为F,连结CF,当点F落在直径AB上时,CF=10,tan∠1=,求⊙O的半径.
【答案】(1)见解析;(2)
【解析】
【分析】
(1)根据∠ADC=∠G得,进而可得,由此可得∠1=∠2;
(2)连接OD、FD,先证FC=FD,FD=CD,进而可得FC=FD=CD=10,DE=CD=5,再根据tan∠1=可得BE=2,设OB=OD=x,则OE=5-x,根据勾股定理即可求得⊙O的半径.
【详解】
(1)证明:∵∠ADC=∠G,
∴,
∵AB为⊙O的直径,
∴
∴,
∴,
∴∠1=∠2;
(2)解:连接OD、FD,
∵,,
∴点C、D关于直径AB对称,
∴AB垂直平分CD,
∴FC=FD,CE=DE=CD,∠DEB=90°,
∵点C关于DG的对称点为F,
∴DG垂直平分FC,
∴FD=CD,
又∵CF=10,
∴FC=FD=CD=10,
∴DE=CD=5,
∵在Rt△DEB中,tan∠1=
∴,
∴,
∴BE=2,
设OB=OD=x,则OE=5-x,
∵在Rt△DOE中,,
∴,
解得:
∴⊙O的半径为.
【点睛】
本题考查了圆周角定理、直径的性质、解直角三角形以及勾股定理,作出正确的辅助线以及根据轴对称性证得FC=FD=CD=10是解决本题的关键.
11.(2020·浙江杭州)如图,已知AC,BD为⊙O的两条直径,连接AB,BC,OE⊥AB于点E,点F是半径OC的中点,连接EF.
(1)设⊙O的半径为1,若∠BAC=30°,求线段EF的长.
(2)连接BF,DF,设OB与EF交于点P,
①求证:PE=PF.
②若DF=EF,求∠BAC的度数.
【答案】(1);(2)①见解析;②∠BAC=45°
【解析】
【分析】
(1)解直角三角形求出AB,再证明∠AFB=90°,利用直角三角形斜边中线的性质即可解决问题.
(2)①过点F作FG⊥AB于G,交OB于H,连接EH.想办法证明四边形OEHF是平行四边形可得结论.
②想办法证明FD=FB,推出FO⊥BD,推出△AOB是等腰直角三角形即可解决问题.
【详解】
(1)解:∵OE⊥AB,∠BAC=30°,OA=1,
∴∠AOE=60°,OE=OA=,AE=EB=OE=,
∵AC是直径,
∴∠ABC=90°,
∴∠C=60°,
∵OC=OB,
∴△OCB是等边三角形,
∵OF=FC,
∴BF⊥AC,
∴∠AFB=90°,
∵AE=EB,
∴EF=AB=.
(2)①证明:过点F作FG⊥AB于G,交OB于H,连接EH.
∵∠FGA=∠ABC=90°,
∴FG∥BC,
∴△OFH∽△OCB,
∴==,
同理=,
∴FH=OE,
∵OE⊥AB.FH⊥AB,
∴OE∥FH,
∴四边形OEHF是平行四边形,
∴PE=PF.
②∵OE∥FG∥BC,
∴==1,
∴EG=GB,
∴EF=FB,
∵DF=EF,
∴DF=BF,
∵DO=OB,
∴FO⊥BD,
∴∠AOB=90°,
∵OA=OB,
∴△AOB是等腰直角三角形,
∴∠BAC=45°.
【点睛】
本题考查了解直角三角形、直径的性质、等边三角形的判定及性质、平行四边形的判定及性质、相似三角形的判定及性质,题目的综合性较强,添加辅助线较多,解题的关键是熟记并且灵活运用有关的性质定理.
相关试卷
这是一份2020-2022年浙江中考数学3年真题汇编 专题18 概率(学生卷+教师卷),文件包含专题18概率-三年2020-2022中考数学真题分项汇编浙江专用解析版docx、专题18概率-三年2020-2022中考数学真题分项汇编浙江专用原卷版docx等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。
这是一份2020-2022年浙江中考数学3年真题汇编 专题13 圆基础题型汇总(学生卷+教师卷),文件包含专题13圆基础题型汇总-三年2020-2022中考数学真题分项汇编浙江专用解析版docx、专题13圆基础题型汇总-三年2020-2022中考数学真题分项汇编浙江专用原卷版docx等2份试卷配套教学资源,其中试卷共65页, 欢迎下载使用。
这是一份2020-2022年浙江中考数学3年真题汇编 专题08 二次函数压轴题型汇总(学生卷+教师卷),文件包含专题08二次函数压轴题型汇总-三年2020-2022中考数学真题分项汇编浙江专用解析版docx、专题08二次函数压轴题型汇总-三年2020-2022中考数学真题分项汇编浙江专用原卷版docx等2份试卷配套教学资源,其中试卷共41页, 欢迎下载使用。