终身会员
搜索
    上传资料 赚现金
    2020-2022年浙江中考数学3年真题汇编 专题13 圆基础题型汇总(学生卷+教师卷)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题13 圆基础题型汇总-三年(2020-2022)中考数学真题分项汇编(浙江专用)(原卷版).docx
    • 解析
      专题13 圆基础题型汇总-三年(2020-2022)中考数学真题分项汇编(浙江专用)(解析版).docx
    2020-2022年浙江中考数学3年真题汇编 专题13 圆基础题型汇总(学生卷+教师卷)01
    2020-2022年浙江中考数学3年真题汇编 专题13 圆基础题型汇总(学生卷+教师卷)02
    2020-2022年浙江中考数学3年真题汇编 专题13 圆基础题型汇总(学生卷+教师卷)03
    2020-2022年浙江中考数学3年真题汇编 专题13 圆基础题型汇总(学生卷+教师卷)01
    2020-2022年浙江中考数学3年真题汇编 专题13 圆基础题型汇总(学生卷+教师卷)02
    2020-2022年浙江中考数学3年真题汇编 专题13 圆基础题型汇总(学生卷+教师卷)03
    还剩12页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020-2022年浙江中考数学3年真题汇编 专题13 圆基础题型汇总(学生卷+教师卷)

    展开
    这是一份2020-2022年浙江中考数学3年真题汇编 专题13 圆基础题型汇总(学生卷+教师卷),文件包含专题13圆基础题型汇总-三年2020-2022中考数学真题分项汇编浙江专用解析版docx、专题13圆基础题型汇总-三年2020-2022中考数学真题分项汇编浙江专用原卷版docx等2份试卷配套教学资源,其中试卷共65页, 欢迎下载使用。

    专题13 圆基础题型汇总
    一、单选题
    1.(2022·浙江嘉兴)如图,在⊙O中,∠BOC=130°,点A在上,则∠BAC的度数为(  )


    A.55° B.65° C.75° D.130°
    【答案】B
    【解析】
    【分析】
    利用圆周角直接可得答案.
    【详解】
    解: ∠BOC=130°,点A在上,

    故选B
    【点睛】
    本题考查的是圆周角定理的应用,掌握“同圆或等圆中,同弧所对的圆周角是它所对的圆心角的一半”是解本题的关键.
    2.(2022·浙江宁波)已知圆锥的底面半径为,母线长为,则圆锥的侧面积为(       )
    A. B. C. D.
    【答案】B
    【解析】
    【分析】
    利用圆锥侧面积计算公式计算即可:;
    【详解】

    故选B.
    【点睛】
    本题考查了圆锥侧面积的计算公式,比较简单,直接代入公式计算即可.
    3.(2021·浙江衢州)已知扇形的半径为6,圆心角为.则它的面积是(     )
    A. B. C. D.
    【答案】D
    【解析】
    【分析】
    已知扇形的半径和圆心角度数求扇形的面积,选择公式直接计算即可.
    【详解】
    解:.
    故选:D
    【点睛】
    本题考查扇形面积公式的知识点,熟知扇形面积公式及适用条件是解题的关键.
    4.(2022·浙江台州)一个垃圾填埋场,它在地面上的形状为长,宽的矩形,有污水从该矩形的四周边界向外渗透了,则该垃圾填埋场外围受污染土地的面积为(       )
    A. B. C. D.
    【答案】B
    【解析】
    【分析】
    根据题意可知受污染土地由两类长分别为,,宽分别为的矩形,及四个能组成一个以半径为的圆组成,求出面积和即可.
    【详解】
    解:根据题意可知受污染土地由两类长分别为,,宽分别为的矩形,及四个能组成一个以半径为的圆组成,
    面积为:,
    故选:B.
    【点睛】
    本题考查了矩形的面积,圆的面积的求法,解题的关键是读懂题目,明确所求的面积的组成部分为哪些.
    5.(2022·浙江温州)如图,是的两条弦,于点D,于点E,连结,.若,则的度数为(       )

    A. B. C. D.
    【答案】B
    【解析】
    【分析】
    根据四边形的内角和等于360°计算可得∠BAC=50°,再根据圆周角定理得到∠BOC=2∠BAC,进而可以得到答案.
    【详解】
    解:∵OD⊥AB,OE⊥AC,
    ∴∠ADO=90°,∠AEO=90°,
    ∵∠DOE=130°,
    ∴∠BAC=360°-90°-90°-130°=50°,
    ∴∠BOC=2∠BAC=100°,
    故选:B.
    【点睛】
    本题考查的是圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
    6.(2022·浙江丽水)某仿古墙上原有一个矩形的门洞,现要将它改为一个圆弧形的门洞,圆弧所在的圆外接于矩形,如图.已知矩形的宽为,高为,则改建后门洞的圆弧长是(       )

    A. B. C. D.
    【答案】C
    【解析】
    【分析】
    利用勾股定理先求得圆弧形的门洞的直径BC,再利用矩形的性质证得是等边三角形,得到,进而求得门洞的圆弧所对的圆心角为,利用弧长公式即可求解.
    【详解】
    如图,连接,,交于点,


    ∵ ,
    ∴是直径,
    ∴,
    ∵四边形是矩形,
    ∴,
    ∵,
    ∴,
    ∴是等边三角形,
    ∴,
    ∴门洞的圆弧所对的圆心角为 ,
    ∴改建后门洞的圆弧长是(m),
    故选:C
    【点睛】
    本题考查了弧长公式,矩形的性质以及勾股定理的应用,从实际问题转化为数学模型是解题的关键.
    7.(2021·浙江)如图,已知点是的外心,∠,连结,,则的度数是(       ).

    A. B. C. D.
    【答案】C
    【解析】
    【分析】
    结合题意,根据三角形外接圆的性质,作;再根据圆周角和圆心角的性质分析,即可得到答案.
    【详解】
    的外接圆如下图

    ∵∠

    故选:C.
    【点睛】
    本题考查了圆的知识;解题的关键是熟练掌握三角形外接圆、圆周角、圆心角的性质,从而完成求解.
    8.(2021·浙江绍兴)如图,正方形ABCD内接于,点P在上,则的度数为(     )

    A. B. C. D.
    【答案】B
    【解析】
    【分析】
    连接OB,OC,由正方形ABCD的性质得,再根据圆周角与圆心角的关系即可得出结论.
    【详解】
    解:连接OB,OC,如图,

    ∵正方形ABCD内接于,


    故选:B.
    【点睛】
    此题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
    9.(2021·浙江嘉兴)已知平面内有和点,,若半径为,线段,,则直线与的位置关系为(          )
    A.相离 B.相交 C.相切 D.相交或相切
    【答案】D
    【解析】
    【分析】
    根据点与圆的位置关系的判定方法进行判断.
    【详解】
    解:∵⊙O的半径为2cm,线段OA=3cm,线段OB=2cm,
    即点A到圆心O的距离大于圆的半径,点B到圆心O的距离等于圆的半径,
    ∴点A在⊙O外.点B在⊙O上,
    ∴直线AB与⊙O的位置关系为相交或相切,
    故选:D.
    【点睛】
    本题考查了直线与圆的位置关系,正确的理解题意是解题的关键.
    10.(2020·浙江绍兴)如图.点A,B,C,D,E均在⊙O上.∠BAC=15°,∠CED=30°,则∠BOD的度数为(  )

    A.45° B.60° C.75° D.90°
    【答案】D
    【解析】
    【分析】
    首先连接BE,由圆周角定理即可得∠BEC的度数,继而求得∠BED的度数,然后由圆周角定理,求得∠BOD的度数.
    【详解】
    解:连接BE,

    ∵∠BEC=∠BAC=15°,∠CED=30°,
    ∴∠BED=∠BEC+∠CED=45°,
    ∴∠BOD=2∠BED=90°.
    故选:D.
    【点睛】
    本题主要考查了圆周角定理的应用,做题的时候分清楚每一个角是解此类题的关键.
    11.(2020·浙江)如图,已知四边形ABCD内接于⊙O,∠ABC=70°,则∠ADC的度数是(  )

    A.70° B.110° C.130° D.140°
    【答案】B
    【解析】
    【分析】
    根据圆内接四边形的对角互补计算即可.
    【详解】
    ∵四边形ABCD内接于⊙O,∠ABC=70°,
    ∴∠ADC=180°﹣∠ABC=180°﹣70°=110°,
    故选:B.
    【点睛】
    本题考查了圆内接四边形的性质,掌握圆内接四边形的对角互补是解题的关键.
    12.(2020·浙江金华)如图,⊙O是等边△ABC的内切圆,分别切AB,BC,AC于点E,F,D,P是上一点,则∠EPF的度数是(   )

    A.65° B.60° C.58° D.50°
    【答案】B
    【解析】
    【分析】
    连接OE,OF.求出∠EOF的度数即可解决问题.
    【详解】
    解:如图,连接OE,OF.
    ∵⊙O是△ABC的内切圆,E,F是切点,
    ∴OE⊥AB,OF⊥BC,
    ∴∠OEB=∠OFB=90°,
    ∵△ABC是等边三角形,
    ∴∠B=60°,
    ∴∠EOF=120°,
    ∴∠EPF=∠EOF=60°,
    故选:B.

    【点睛】
    本题考查三角形的内切圆与内心,切线的性质,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    13.(2022·浙江湖州)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.如图,在6×6的正方形网格图形ABCD中,M,N分别是AB,BC上的格点,BM=4,BN=2.若点P是这个网格图形中的格点,连接PM,PN,则所有满足∠MPN=45°的△PMN中,边PM的长的最大值是(   )

    A. B.6 C. D.
    【答案】C
    【解析】
    【分析】
    根据同弧所对的圆周角等于所对圆心角的一半,过点M、N作以点O为圆心,∠MON=90°的圆,则点P在所作的圆上,观察圆O所经过的格点,找出到点M距离最大的点即可求出.
    【详解】
    作线段MN中点Q,作MN的垂直平分线OQ,并使OQ=MN,以O为圆心,OM为半径作圆,如图,

    因为OQ为MN垂直平分线且OQ=MN,所以OQ=MQ=NQ,
    ∴∠OMQ=∠ONQ=45°,
    ∴∠MON=90°,
    所以弦MN所对的圆O的圆周角为45°,
    所以点P在圆O上,PM为圆O的弦,
    通过图像可知,当点P在位置时,恰好过格点且经过圆心O,
    所以此时最大,等于圆O的直径,
    ∵BM=4,BN=2,
    ∴,
    ∴MQ=OQ=,
    ∴OM=,
    ∴,
    故选 C.
    【点睛】
    此题考查了圆的相关知识,熟练掌握同弧所对的圆周角相等、直径是圆上最大的弦,会灵活用已知圆心角和弦作圆是解题的关键.
    14.(2021·浙江湖州)如图,已知在矩形中,,点是边上的一个动点,连结,点关于直线的对称点为,当点运动时,点也随之运动.若点从点运动到点,则线段扫过的区域的面积是(       )

    A. B. C. D.
    【答案】B
    【解析】
    【分析】
    先判断出点Q在以BC为直径的圆弧上运动,再判断出点C1在以B为圆心,BC为直径的圆弧上运动,找到当点P与点A重合时,点P与点D重合时,点C1运动的位置,利用扇形的面积公式及三角形的面积公式求解即可.
    【详解】
    解:设BP与CC1相交于Q,则∠BQC=90°,

    ∴当点P在线段AD运动时,点Q在以BC为直径的圆弧上运动,
    延长CB到E,使BE=BC,连接EC,
    ∵C、C1关于PB对称,
    ∴∠EC1C=∠BQC=90°,
    ∴点C1在以B为圆心,BC为直径的圆弧上运动,
    当点P与点A重合时,点C1与点E重合,
    当点P与点D重合时,点C1与点F重合,

    此时,,
    ∴∠PBC=30°,
    ∴∠FBP=∠PBC=30°,CQ=,BQ=,
    ∴∠FBE=180°-30°-30°=120°,,
    线段扫过的区域的面积是.
    故选:B.
    【点睛】
    本题考查了矩形的性质、三角形中位线定理、直角三角形的性质、三角函数以及扇形面积公式等知识;熟练掌握矩形的性质和轴对称的性质是解题的关键.
    15.(2021·浙江丽水)如图,是的直径,弦于点E,连结.若的半径为,则下列结论一定成立的是(       )

    A. B. C. D.
    【答案】B
    【解析】
    【分析】
    根据垂径定理、锐角三角函数的定义进行判断即可解答.
    【详解】
    解:∵是的直径,弦于点E,

    在中,,

    ∴,故选项A错误,不符合题意;


    ∴,故选项B正确,符合题意;



    ∴,故选项C错误,不符合题意;
    ∵,
    ∴,故选项D错误,不符合题意;
    故选B.
    【点睛】
    本题考查了垂径定理,锐角三角函数的定义以及三角形面积公式的应用,解本题的关键是熟记垂径定理和锐角三角函数的定义.
    16.(2021·浙江金华)如图,在中,,以该三角形的三条边为边向形外作正方形,正方形的顶点都在同一个圆上.记该圆面积为,面积为,则的值是(       )

    A. B. C. D.
    【答案】C
    【解析】
    【分析】
    先确定圆的圆心在直角三角形斜边的中点,然后利用全等三角形的判定和性质确定△ABC是等腰直角三角形,再根据直角三角形斜边中线的性质得到,再由勾股定理解得,解得,据此解题即可.
    【详解】
    解:如图所示,正方形的顶点都在同一个圆上,
    圆心在线段的中垂线的交点上,即在斜边的中点,且AC=MC,BC=CG,
    ∴AG=AC+CG=AC+BC,BM=BC+CM=BC+AC,
    ∴AG=BM,
    又∵OG=OM,OA=OB,
    ∴△AOG≌△BOM,
    ∴∠CAB=∠CBA,
    ∵∠ACB=90°,
    ∴∠CAB=∠CBA=45°,






    故选:C.
    【点睛】
    本题考查勾股定理、直角三角形斜边的中线的性质、圆的面积、三角形的面积等知识,是重要考点,难度一般,掌握相关知识是解题关键.
    17.(2020·浙江嘉兴)如图,在等腰△ABC中,AB=AC=2,BC=8,按下列步骤作图:
    ①以点A为圆心,适当的长度为半径作弧,分别交AB,AC于点E,F,再分别以点E,F为圆心,大于EF的长为半径作弧相交于点H,作射线AH;
    ②分别以点A,B为圆心,大于AB的长为半径作弧相交于点M,N,作直线MN,交射线AH于点O;
    ③以点O为圆心,线段OA长为半径作圆.
    则⊙O的半径为(  )

    A.2 B.10 C.4 D.5
    【答案】D
    【解析】
    【分析】
    如图,设OA交BC于T.解直角三角形求出AT,再在Rt△OCT中,利用勾股定理构建方程即可解决问题.
    【详解】
    解:如图,设OA交BC于T.

    ∵AB=AC=2,AO平分∠BAC,
    ∴AO⊥BC,BT=TC=4,
    ∴AE=,
    在Rt△OCT中,则有r2=(r﹣2)2+42,
    解得r=5,
    故选:D.
    【点睛】
    本题考查作图——复杂作图,等腰三角形的性质,垂径定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
    18.(2020·浙江杭州)如图,已知BC是⊙O的直径,半径OA⊥BC,点D在劣弧AC上(不与点A,点C重合),BD与OA交于点E.设∠AED=α,∠AOD=β,则(  )

    A.3α+β=180° B.2α+β=180° C.3α﹣β=90° D.2α﹣β=90°
    【答案】D
    【解析】
    【分析】
    根据直角三角形两锐角互余性质,用α表示∠CBD,进而由圆心角与圆周角关系,用α表示∠COD,最后由角的和差关系得结果.
    【详解】
    解:∵OA⊥BC,
    ∴∠AOB=∠AOC=90°,
    ∴∠DBC=90°﹣∠BEO
    =90°﹣∠AED
    =90°﹣α,
    ∴∠COD=2∠DBC
    =180°﹣2α,
    ∵∠AOD+∠COD=90°,
    ∴β+180°﹣2α=90°,
    ∴2α﹣β=90°,
    故选:D.

    【点睛】
    本题考查了圆周角定理以及直角三角形的两个锐角互余的关系,熟练掌握圆周角定理是解决本题的关键.
    二、填空题
    19.(2022·浙江温州)若扇形的圆心角为,半径为,则它的弧长为___________.
    【答案】π
    【解析】
    【分析】
    根据题目中的数据和弧长公式,可以计算出该扇形的弧长.
    【详解】
    解:∵扇形的圆心角为120°,半径为,
    ∴它的弧长为:
    故答案为:
    【点睛】
    本题考查弧长的计算,解答本题的关键是明确弧长的计算公式
    20.(2022·浙江湖州)如图,已知AB是⊙O的弦,∠AOB=120°,OC⊥AB,垂足为C,OC的延长线交⊙O于点D.若∠APD是所对的圆周角,则∠APD的度数是______.

    【答案】30°##30度
    【解析】
    【分析】
    根据垂径定理得出∠AOB=∠BOD,进而求出∠AOD=60°,再根据圆周角定理可得∠APD=∠AOD=30°.
    【详解】
    ∵OC⊥AB,OD为直径,
    ∴,
    ∴∠AOB=∠BOD,
    ∵∠AOB=120°,
    ∴∠AOD=60°,
    ∴∠APD=∠AOD=30°,
    故答案为:30°.
    【点睛】
    本题考查了圆周角定理、垂径定理等知识,掌握垂径定理是解答本题的关键.
    21.(2022·浙江宁波)如图,在△ABC中,AC=2,BC=4,点O在BC上,以OB为半径的圆与AC相切于点A,D是BC边上的动点,当△ACD为直角三角形时,AD的长为___________.

    【答案】或
    【解析】
    【分析】
    根据切线的性质定理,勾股定理,直角三角形的等面积法解答即可.
    【详解】
    解:连接OA,


    ①当D点与O点重合时,∠CAD为90°,
    设圆的半径=r,
    ∴OA=r,OC=4-r,
    ∵AC=4,
    在Rt△AOC中,根据勾股定理可得:r2+4=(4-r)2,
    解得:r=,
    即AD=AO=;
    ②当∠ADC=90°时,过点A作AD⊥BC于点D,


    ∵AO•AC=OC•AD,
    ∴AD=,
    ∵AO=,AC=2,OC=4-r=,
    ∴AD=,
    综上所述,AD的长为或,
    故答案为:或.
    【点睛】
    本题主要考查了切线的性质和勾股定理,熟练掌握这些性质定理是解决本题的关键.
    22.(2021·浙江台州)如图,将线段AB绕点A顺时针旋转30°,得到线段AC.若AB=12,则点B经过的路径长度为_____.(结果保留π)

    【答案】
    【解析】
    【分析】
    直接利用弧长公式即可求解.
    【详解】
    解:,
    故答案为:.
    【点睛】
    本题考查弧长公式,掌握弧长公式是解题的关键.
    23.(2021·浙江杭州)如图,已知的半径为1,点是外一点,且.若是的切线,为切点,连接,则_____.

    【答案】
    【解析】
    【分析】
    根据圆的切线的性质,得,根据圆的性质,得,再通过勾股定理计算,即可得到答案.
    【详解】
    ∵是的切线,为切点


    ∵的半径为1


    故答案为:.
    【点睛】
    本题考查了圆、勾股定理的知识;解题的关键是熟练掌握圆、圆的切线、勾股定理的性质,从而完成求解.
    24.(2020·浙江台州)如图,在△ABC中,D是边BC上的一点,以AD为直径的⊙O交AC于点E,连接DE.若⊙O与BC相切,∠ADE=55°,则∠C的度数为_____________ .

    【答案】55°
    【解析】
    【分析】
    根据AD是直径可得∠AED=90°,再根据BC是⊙O的切线可得∠ADC=90°,再根据直角的定义及角度等量替换关系即可得到∠C=∠ADE=55°.
    【详解】
    ∵AD是直径,
    ∴∠AED=90°,
    ∴∠ADE+∠DAE=90°
    ∵BC是⊙O的切线,
    ∴∠ADC=90°,
    ∴∠C+∠DAE=90°
    ∴∠C=∠ADE=55°.
    故答案为:55°.
    【点睛】
    此题主要考查圆内的角度求解,解题的关键是熟知切线的性质.
    25.(2022·浙江嘉兴)如图,在扇形中,点C,D在上,将沿弦折叠后恰好与,相切于点E,F.已知,,则的度数为_______;折痕的长为_______.

    【答案】     60°##60度    
    【解析】
    【分析】
    根据对称性作O关于CD的对称点M,则点D、E、F、B都在以M为圆心,半径为6的圆上,再结合切线的性质和垂径定理求解即可.
    【详解】
    作O关于CD的对称点M,则ON=MN
    连接MD、ME、MF、MO,MO交CD于N

    ∵将沿弦折叠
    ∴点D、E、F、B都在以M为圆心,半径为6的圆上
    ∵将沿弦折叠后恰好与,相切于点E,F.
    ∴ME⊥OA,MF⊥OB


    ∴四边形MEOF中
    即的度数为60°;
    ∵,
    ∴(HL)



    ∵MO⊥DC


    故答案为:60°;
    【点睛】
    本题考查了折叠的性质、切线的性质、垂径定理、勾股定理;熟练掌握折叠的性质作出辅助线是解题的关键.
    26.(2022·浙江杭州)如图是以点O为圆心,AB为直径的圆形纸片,点C在⊙O上,将该圆形纸片沿直线CO对折,点B落在⊙O上的点D处(不与点A重合),连接CB,CD,AD.设CD与直径AB交于点E.若AD=ED,则∠B=_________度;的值等于_________.

    【答案】     36    
    【解析】
    【分析】
    由等腰三角形的性质得出∠DAE=∠DEA,证出∠BEC=∠BCE,由折叠的性质得出∠ECO=∠BCO,设∠ECO=∠OCB=∠B=x,证出∠BCE=∠ECO+∠BCO=2x,∠CEB=2x,由三角形内角和定理可得出答案;证明△CEO∽△BEC,由相似三角形的性质得出,设EO=x,EC=OC=OB=a,得出a2=x(x+a),求出OE=a,证明△BCE∽△DAE,由相似三角形的性质得出,则可得出答案.
    【详解】
    解:∵AD=DE,
    ∴∠DAE=∠DEA,
    ∵∠DEA=∠BEC,∠DAE=∠BCE,
    ∴∠BEC=∠BCE,
    ∵将该圆形纸片沿直线CO对折,
    ∴∠ECO=∠BCO,
    又∵OB=OC,
    ∴∠OCB=∠B,
    设∠ECO=∠OCB=∠B=x,
    ∴∠BCE=∠ECO+∠BCO=2x,
    ∴∠CEB=2x,
    ∵∠BEC+∠BCE+∠B=180°,
    ∴x+2x+2x=180°,
    ∴x=36°,
    ∴∠B=36°;
    ∵∠ECO=∠B,∠CEO=∠CEB,
    ∴△CEO∽△BEC,
    ∴,
    ∴CE2=EO•BE,
    设EO=x,EC=OC=OB=a,
    ∴a2=x(x+a),
    解得,x=a(负值舍去),
    ∴OE=a,
    ∴AE=OA-OE=a-a=a,
    ∵∠AED=∠BEC,∠DAE=∠BCE,
    ∴△BCE∽△DAE,
    ∴,
    ∴.
    故答案为:36,.
    【点睛】
    本题是圆的综合题,考查了圆周角定理,折叠的性质,等腰三角形的判定与性质,三角形内角和定理,相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.
    27.(2021·浙江宁波)抖空竹在我国有着悠久的历史,是国家级的非物质文化遗产之一.如示意图,分别与相切于点C,D,延长交于点P.若,的半径为,则图中的长为________.(结果保留)

    【答案】
    【解析】
    【分析】
    连接OC、OD,利用切线的性质得到,根据四边形的内角和求得,再利用弧长公式求得答案.
    【详解】
    连接OC、OD,
    ∵分别与相切于点C,D,
    ∴,
    ∵,,
    ∴,
    ∴的长=(cm),
    故答案为:.


    【点睛】
    此题考查圆的切线的性质定理,四边形的内角和,弧长的计算公式,熟记圆的切线的性质定理及弧长的计算公式是解题的关键.
    28.(2021·浙江温州)如图,与的边相切,切点为.将绕点按顺时针方向旋转得到,使点落在上,边交线段于点.若,则______度.

    【答案】85
    【解析】
    【分析】
    连结OO′,先证△BOO′为等边三角形,求出∠AOB=∠OBO′=60°,由与的边相切,可求∠CBO==30°,利用三角形内角和公式即可求解.
    【详解】
    解:连结OO′,
    ∵将绕点按顺时针方向旋转得到,
    ∴BO′=BO=OO′,
    ∴△BOO′为等边三角形,
    ∴∠OBO′=60°,
    ∵与的边相切,
    ∴∠OBA=∠O′BA′=90°,
    ∴∠CBO=90°-∠OBO′=90°-60°=30°,
    ∵∠A′=25°
    ∴∠A′O′B=90°-∠A′=90°-25°=65°
    ∴∠AOB=∠A′O′B=65°,
    ∴∠OCB=180°-∠COB-∠OBC=180°-65°-30°=85°.
    故答案为85.

    【点睛】
    本题考查图形旋转性质,切线性质,等边三角形判定与性质,直角三角形性质,掌握图形旋转性质,切线性质,等边三角形判定与性质,直角三角形性质是解题关键.
    29.(2021·浙江温州)若扇形的圆心角为,半径为17,则扇形的弧长为______.
    【答案】
    【解析】
    【分析】
    根据弧长公式l=求解即可.
    【详解】
    ∵扇形的圆心角为,半径为17,
    ∴扇形的弧长==.
    故答案为:
    【点睛】
    本题考查了弧长计算,熟记弧长公式是解题的关键.
    30.(2020·浙江宁波)如图,折扇的骨柄长为27cm,折扇张开的角度为120°,图中的长为__cm(结果保留π).

    【答案】18π
    【解析】
    【分析】
    根据弧长公式即可得到结论.
    【详解】
    解:∵折扇的骨柄长为27cm,折扇张开的角度为120°,
    ∴的长==18π(cm),
    故答案为:18π.
    【点睛】
    本题考查了弧长的计算,熟练掌握弧长公式是解题的关键.
    31.(2020·浙江宁波)如图,⊙O的半径OA=2,B是⊙O上的动点(不与点A重合),过点B作⊙O的切线BC,BC=OA,连结OC,AC.当△OAC是直角三角形时,其斜边长为__.

    【答案】2或2
    【解析】
    【分析】
    先根据切线的性质和等腰直角三角形的判定方法证得△OBC是等腰直角三角形,当 ∠AOC=90°,连接OB,根据勾股定理可得斜边AC的长,当 ∠OAC=90°,同理可求.
    【详解】
    解:连接OB,
    ∵BC是⊙O的切线,
    ∴∠OBC=90°,
    ∵BC=OA,
    ∴OB=BC=2,
    ∴△OBC是等腰直角三角形,
    ∴∠BCO=45°,
    ∴∠ACO≤45°,
    当∠AOC=90°,△OAC是直角三角形时,

    ∴OC=OB=2,
    ∴AC===2;
    当∠OAC=90°,四边形OACB是正方形,
    OC=2;

    故答案为:2或2.
    【点睛】
    本题考查切斜的性质、等腰直角三角形的判定及其性质、勾股定理,解题的关键是综合运用所学的知识求出OC.
    32.(2020·浙江嘉兴)如图,在半径为的圆形纸片中,剪一个圆心角为90°的最大扇形(阴影部分),则这个扇形的面积为_____;若将此扇形围成一个无底的圆锥(不计接头),则圆锥底面半径为_____.

    【答案】     π    
    【解析】
    【分析】
    由勾股定理求扇形的半径,再根据扇形面积公式求值;根据扇形的弧长等于底面周长求得底面半径即可.
    【详解】
    解:连接BC,
    由∠BAC=90°得BC为⊙O的直径,
    ∴BC=2,
    在Rt△ABC中,由勾股定理可得:AB=AC=2,
    ∴S扇形ABC==π;
    ∴扇形的弧长为:=π,
    设底面半径为r,则2πr=π,
    解得:r=,
    故答案为:π,.

    【点睛】
    本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
    33.(2020·浙江湖州)如图,已知AB是半圆O的直径,弦CD∥AB,CD=8.AB=10,则CD与AB之间的距离是_____.

    【答案】3
    【解析】
    【分析】
    过点O作OH⊥CD于H,连接OC,先利用垂径定理得到CH=4,然后在Rt△OCH中,利用勾股定理即可求解.
    【详解】
    解:过点O作OH⊥CD于H,

    连接OC,如图,则CH=DH=CD=4,
    在Rt△OCH中,OH==3,
    所以CD与AB之间的距离是3.
    故答案为3.
    【点睛】
    此题主要考查垂径定理和勾股定理,熟练掌握垂径定理和勾股定理是解题关键.
    34.(2020·浙江温州)若扇形的圆心角为45°,半径为3,则该扇形的弧长为_______.
    【答案】
    【解析】
    【分析】
    根据弧长公式求解.
    【详解】

    故答案为:.
    【点睛】
    本题考查了弧长的计算,解答本题的关键是掌握弧长公式.
    35.(2020·浙江杭州)如图,已知AB是⊙O的直径,BC与⊙O相切于点B,连接AC,OC.若sin∠BAC=,则tan∠BOC=_____.

    【答案】
    【解析】
    【分析】
    根据切线的性质得到AB⊥BC,设BC=x,AC=3x,根据勾股定理得到AB===2x,于是得到结论.
    【详解】
    解:∵AB是⊙O的直径,BC与⊙O相切于点B,
    ∴AB⊥BC,
    ∴∠ABC=90°,
    ∵sin∠BAC==,
    ∴设BC=x,AC=3x,
    ∴AB===2x,
    ∴OB=AB=x,
    ∴tan∠BOC==,
    故答案为:.
    【点睛】
    本题考查了切线的性质、解直角三角形,熟练掌握解直角三角形的相关知识是解决本题的关键.
    三、解答题
    36.(2020·浙江嘉兴)已知:如图,在△OAB中,OA=OB,⊙O与AB相切与点C.求证:AC=BC.
    小明同学的证明过程如下框:
                
    小明的证法是否正确?若正确,请在框内打“√”;若错误,请写出你的证明过程.
    【答案】证法错误.证明见解析
    【解析】
    【分析】
    小明同学通过两边及一边的对角对应相等证明两个三角形全等是错误的,没有这样的判定定理.连接OC,根据切线的性质和等腰三角形三线合一的性质得出结论即可.
    【详解】
    解:证法错误.
    证明:连结 OC.

    ∵⊙O与AB相切于点C,
    ∴OC⊥AB.
    ∵OA=OB,
    ∴AC=BC.
    【点睛】
    本题考查切线的性质和等腰三角形的性质,熟练掌握切线的性质和等腰三角形三线合一的性质是解题的关键.
    37.(2020·浙江舟山)已知:如图,在△OAB中,OA=OB,⊙O与AB相切于点C.求证:AC=BC.小明同学的证明过程如下框:
    证明:连结OC,
    ∵OA=OB,
    ∴∠A=∠B,
    又∵OC=OC,
    ∴△OAC≌△OBC,
    ∴AC=BC.

    小明的证法是否正确?若正确,请在框内打“√”;若错误,请写出你的证明过程.

    【答案】错误,证明见解析
    【解析】
    【分析】
    连结OC,根据切线的性质和等腰三角形的性质即可得到结论.
    【详解】
    解:证法错误;
    证明:连结OC,
    ∵⊙O与AB相切于点C,
    ∴OC⊥AB,
    ∵OA=OB,
    ∴AC=BC.
    【点睛】
    本题考查了切线的性质,等腰三角形的性质,熟练正确切线的性质是解题的关键.
    38.(2022·浙江湖州)如图,已知在Rt△ABC中,,D是AB边上一点,以BD为直径的半圆O与边AC相切,切点为E,过点O作,垂足为F.

    (1)求证:;
    (2)若,,求AD的长.
    【答案】(1)见解析
    (2)1
    【解析】
    【分析】
    (1)连接OE,根据已知条件和切线的性质证明四边形OFCE是矩形,再根据矩形的性质证明即可;
    (2)根据题意,结合(1)可知,再由直角三角形中“30°角所对的直角边是斜边的一般”的性质,可推导,最后由计算AD的长即可.
    (1)
    解:如图,连接OE,

    ∵AC切半圆O于点E,
    ∴OE⊥AC,
    ∵OF⊥BC,,
    ∴∠OEC=∠OFC=∠C=90°.
    ∴四边形OFCE是矩形,
    ∴OF=EC;
    (2)
    ∵,
    ∴,
    ∵,OE⊥AC,
    ∴,
    ∴.
    【点睛】
    本题主要考查了切线的性质、矩形的判定与性质以及含30°角的直角三角形性质等知识,正确作出辅助线并灵活运用相关性质是解题关键.
    39.(2022·浙江台州)如图,在中,,以为直径的⊙与交于点,连接.

    (1)求证:;
    (2)若⊙与相切,求的度数;
    (3)用无刻度的直尺和圆规作出劣弧的中点.(不写作法,保留作图痕迹)
    【答案】(1)证明见详解
    (2)
    (3)作图见详解
    【解析】
    【分析】
    (1)根据直径所对的圆周角是直角、等腰三角形的三线合一即可证明;
    (2)根据切线的性质可以得到,然后在等腰直角三角形中即可求解;
    (3)根据等弧所对的圆周角相等,可知可以作出AD的垂直平分线,的角平分线,的角平分线等方法均可得到结论.
    (1)
    证明:∵是的直径,
    ∴,
    ∴,
    ∵,
    ∴.
    (2)
    ∵与相切,
    ∴,
    又∵,
    ∴.
    (3)
    如下图,点就是所要作的的中点.

    【点睛】
    本题考查了等腰三角形的三线合一、切线的性质、以及尺规作图、等弧所对的圆周角相等,理解圆的相关知识并掌握基本的尺规作图方法是解题的关键.
    40.(2022·浙江绍兴)如图,半径为6的⊙O与Rt△ABC的边AB相切于点A,交边BC于点C,D,∠B=90°,连接OD,AD.

    (1)若∠ACB=20°,求的长(结果保留).
    (2)求证:AD平分∠BDO.
    【答案】(1)
    (2)见解析
    【解析】
    【分析】
    (1)连接,由,得,由弧长公式即得的长为;
    (2)根据切于点,,可得,有,而,即可得,从而平分.
    (1)
    解:连接OA,

    ∵∠ACB=20°,
    ∴∠AOD=40°,
    ∴,


    (2)
    证明:,

    切于点,





    平分.
    【点睛】
    本题考查与圆有关的计算及圆的性质,解题的关键是掌握弧长公式及圆的切线的性质.
    41.(2022·浙江金华)如图1,正五边形内接于⊙,阅读以下作图过程,并回答下列问题,作法:如图2,①作直径;②以F为圆心,为半径作圆弧,与⊙交于点M,N;③连接.

    (1)求的度数.
    (2)是正三角形吗?请说明理由.
    (3)从点A开始,以长为半径,在⊙上依次截取点,再依次连接这些分点,得到正n边形,求n的值.
    【答案】(1)
    (2)是正三角形,理由见解析
    (3)
    【解析】
    【分析】
    (1)根据正五边形的性质以及圆的性质可得,则(优弧所对圆心角),然后根据圆周角定理即可得出结论;
    (2)根据所作图形以及圆周角定理即可得出结论;
    (3)运用圆周角定理并结合(1)(2)中结论得出,即可得出结论.
    (1)
    解:∵正五边形.
    ∴,
    ∴,
    ∵,
    ∴(优弧所对圆心角),
    ∴;
    (2)
    解:是正三角形,理由如下:
    连接,

    由作图知:,
    ∵,
    ∴,
    ∴是正三角形,
    ∴,
    ∴,
    同理,
    ∴,即,
    ∴是正三角形;
    (3)
    ∵是正三角形,
    ∴.
    ∵,
    ∴,
    ∵,
    ∴,
    ∴.
    【点睛】
    本题考查了圆周角定理,正多边形的性质,读懂题意,明确题目中的作图方式,熟练运用圆周角定理是解本题的关键.
    42.(2021·浙江衢州)如图,在中,,BC与相切于点D,过点A作AC的垂线交CB的延长线于点E,交于点F,连结BF.

    (1)求证:BF是的切线.
    (2)若,,求EF的长.
    【答案】(1)见解析;(2)3
    【解析】
    【分析】
    (1)连接,根据题意证明,即可证明BF是的切线;
    (2)根据题意即(1)的结论可得,列比例求出FB的长,根据勾股定理求EF即可.
    【详解】
    (1)证明如图,连接,





    又切BC于点D,



    又,,


    是的切线.
    (2)由(1)得:,



    ,,



    【点睛】
    本题主要考查圆切线的判定,全等三角形的判定和性质,等腰三角形的性质,相似三角形的判定和性质,熟知知识点、作出合理辅助线是解决本题的关键.
    43.(2021·浙江杭州)如图,锐角三角形内接于,的平分线交于点,交边于点,连接.

    (1)求证:.
    (2)已知,,求线段的长(用含,的代数式表示).
    (3)已知点在线段上(不与点,点重合),点在线段上(不与点,点重合),,求证:.
    【答案】(1)见解析;(2);(3)见解析
    【解析】
    【分析】
    (1)由题目已知角平分线相等得到两个相等,同弧所对的两个圆周角相等,从而证明两三角形相似;
    (2)由(1)中的相似可以得到线段成比例,再由即可求得;
    (3)要证即证,已知条件有一对角相等,利用外角关系可以证明,从而得证.
    【详解】
    (1)因为平分,
    所以,
    又因为,
    所以.
    (2)由(1),知,
    因为,
    所以,
    所以.
    (3)因为,
    又因为,
    所以,
    因为,
    所以,
    又因为,
    所以,
    所以,
    所以.
    【点睛】
    本题考查了圆的圆周角概念,相似三角形的判定与性质,三角形外角的性质等知识点,解题关键是要根据已知条件找到相似的两个三角形并通过角度的转换从而证明相似.
    44.(2021·浙江丽水)如图,在中,,以为直径的半圆O交于点D,过点D作半圆O的切线,交于点E.

    (1)求证:;
    (2)若,求的长.
    【答案】(1)见解析;(2)
    【解析】
    【分析】
    (1)连结,利用圆的切线性质,间接证明:,再根据条件中:且,即能证明:;
    (2)由(1)可以证明:为直角三角形,由勾股定求出的长,求出,可得到的度数,从而说明为等边三角形,再根据边之间的关系及弦长所对应的圆周角及圆心角之间的关系,求出,半径,最后根据弧长公式即可求解.
    【详解】
    解:(1)证明:如图,连结.

    与相切,.
    是圆的直径,.




    (2)由(1)可知,,

    ,,
    是等边三角形.
    ,


    【点睛】
    本题考查了圆的切线的性质、解直角三角形、勾股定理、圆心角和圆周角之间的关系、弧长公式等知识点,解本题第二问的关键是:熟练掌握等边三角形判定与性质.
    45.(2021·浙江)如图,已知是⊙的直径,是所对的圆周角,.

    (1)求的度数;
    (2)过点作,垂足为,的延长线交⊙于点.若,求的长.
    【答案】(1);(2)
    【解析】
    【分析】
    (1)连结,根据圆周角性质,得;根据直径所对圆周角为直角、直角三角形两锐角互余的性质计算,即可得到答案;
    (2)根据含角的直角三角形性质,得;根据垂径定理、特殊角度三角函数的性质计算,即可得到答案.
    【详解】
    (1)连结,



    是的直径,


    (2),,

    ,,且是直径


    【点睛】
    本题考查了圆、含角的直角三角形、三角函数的知识;解题的关键是熟练掌握圆周角、垂径定理、含角的直角三角形、三角函数、直角三角形两锐角互余的性质,从而完成求解.
    46.(2020·浙江衢州)如图,△ABC内接于⊙O,AB为⊙O的直径,AB=10,AC=6,连结OC,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.
    (1)求证:∠CAD=∠CBA.
    (2)求OE的长.

    【答案】(1)见解析;(2)1.4
    【解析】
    【分析】
    (1)利用垂径定理以及圆周角定理解决问题即可;
    (2)证明△AEC∽△BCA,推出,求出EC即可解决问题.
    【详解】
    (1)证明:∵AE=DE,OC是半径,
    ∴,
    ∴∠CAD=∠CBA;
    (2)解:如图:

    ∵AB是直径,
    ∴∠ACB=90°,
    ∵AE=DE,
    ∴OC⊥AD,
    ∴∠AEC=90°,
    ∴∠AEC=∠ACB,
    ∴△AEC∽△BCA,
    ∴,
    ∴,
    ∴CE=3.6,
    ∵OC=AB=5,
    ∴OE=OC﹣EC=5﹣3.6=1.4.
    【点睛】
    本题考查了垂径定理,圆周角定理,相似三角形的判定和性质,证明△AEC∽△BCA是解题关键.
    47.(2020·浙江金华)如图,的半径OA=2,OC⊥AB于点C,∠AOC=60°.
    (1)求弦AB的长.
    (2)求的长.

    【答案】(1)2;(2)
    【解析】
    【分析】
    (1)根据题意和垂径定理,可以求得的长,然后即可得到的长;
    (2)根据,可以得到的度数,然后根据弧长公式计算即可.
    【详解】
    解:(1)的半径,于点,,


    (2),,


    的长是:.

    【点睛】
    本题考查弧长的计算、垂径定理,解答本题的关键是明确题意,利用数形结合的思想解答.

    相关试卷

    2020-2022年浙江中考数学3年真题汇编 专题18 概率(学生卷+教师卷): 这是一份2020-2022年浙江中考数学3年真题汇编 专题18 概率(学生卷+教师卷),文件包含专题18概率-三年2020-2022中考数学真题分项汇编浙江专用解析版docx、专题18概率-三年2020-2022中考数学真题分项汇编浙江专用原卷版docx等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。

    2020-2022年浙江中考数学3年真题汇编 专题14 圆压轴题型汇总(学生卷+教师卷): 这是一份2020-2022年浙江中考数学3年真题汇编 专题14 圆压轴题型汇总(学生卷+教师卷),文件包含专题14圆压轴题型汇总-三年2020-2022中考数学真题分项汇编浙江专用解析版docx、专题14圆压轴题型汇总-三年2020-2022中考数学真题分项汇编浙江专用原卷版docx等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。

    2020-2022年浙江中考数学3年真题汇编 专题08 二次函数压轴题型汇总(学生卷+教师卷): 这是一份2020-2022年浙江中考数学3年真题汇编 专题08 二次函数压轴题型汇总(学生卷+教师卷),文件包含专题08二次函数压轴题型汇总-三年2020-2022中考数学真题分项汇编浙江专用解析版docx、专题08二次函数压轴题型汇总-三年2020-2022中考数学真题分项汇编浙江专用原卷版docx等2份试卷配套教学资源,其中试卷共41页, 欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2020-2022年浙江中考数学3年真题汇编 专题13 圆基础题型汇总(学生卷+教师卷)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map