|试卷下载
终身会员
搜索
    上传资料 赚现金
    四川省眉山市东坡区东坡区东坡中学2022年中考数学模拟试题含解析
    立即下载
    加入资料篮
    四川省眉山市东坡区东坡区东坡中学2022年中考数学模拟试题含解析01
    四川省眉山市东坡区东坡区东坡中学2022年中考数学模拟试题含解析02
    四川省眉山市东坡区东坡区东坡中学2022年中考数学模拟试题含解析03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    四川省眉山市东坡区东坡区东坡中学2022年中考数学模拟试题含解析

    展开
    这是一份四川省眉山市东坡区东坡区东坡中学2022年中考数学模拟试题含解析,共25页。试卷主要包含了下列运算正确的是,二次函数y=﹣等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.目前,世界上能制造出的最小晶体管的长度只有0.000 000 04m,将0.000 000 04用科学记数法表示为(  )
    A.0.4×108 B.4×108 C.4×10﹣8 D.﹣4×108
    2.已知,则的值为
    A. B. C. D.
    3.已知xa=2,xb=3,则x3a﹣2b等于(  )
    A. B.﹣1 C.17 D.72
    4.八边形的内角和为(  )
    A.180° B.360° C.1 080° D.1 440°
    5.如图,在中,,分别以点和点为圆心,以大于的长为半径作弧,两弧相交于点和点,作直线交于点,交于点,连接.若,则的度数是( )

    A. B. C. D.
    6.下列运算正确的是(  )
    A.2a2+3a2=5a4 B.(﹣)﹣2=4
    C.(a+b)(﹣a﹣b)=a2﹣b2 D.8ab÷4ab=2ab
    7.按如下方法,将△ABC的三边缩小的原来的,如图,任取一点O,连AO、BO、CO,并取它们的中点D、E、F,得△DEF,则下列说法正确的个数是(  )
    ①△ABC与△DEF是位似图形      ②△ABC与△DEF是相似图形
    ③△ABC与△DEF的周长比为1:2   ④△ABC与△DEF的面积比为4:1.

    A.1 B.2 C.3 D.4
    8.某市从今年1月1日起调整居民用水价格,每立方米水费上涨 .小丽家去年12月份的水费是15元,而今年5月的水费则是10元.已知小丽家今年5月的用水量比去年12月的用水量多5m1.求该市今年居民用水的价格.设去年居民用水价格为x元/m1,根据题意列方程,正确的是(  )
    A. B.
    C. D.
    9.如图,已知矩形ABCD中,BC=2AB,点E在BC边上,连接DE、AE,若EA平分∠BED,则的值为(  )

    A. B. C. D.
    10.二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为( )
    A. B.2 C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,一下水管道横截面为圆形,直径为100cm,下雨前水面宽为60cm,一场大雨过后,水面宽为80cm,则水位上升______cm.

    12.如图,在平面直角坐标系xOy中,四边形OABC是正方形,点C(0,4),D是OA中点,将△CDO以C为旋转中心逆时针旋转90°后,再将得到的三角形平移,使点C与点O重合,写出此时点D的对应点的坐标:_____.

    13.如图,已知抛物线和x轴交于两点A、B,和y轴交于点C,已知A、B两点的横坐标分别为﹣1,4,△ABC是直角三角形,∠ACB=90°,则此抛物线顶点的坐标为_____.

    14.已知AB=AC,tanA=2,BC=5,则△ABC的面积为_______________.

    15.Rt△ABC中,AD为斜边BC上的高,若, 则 .
    16.如图,Rt△ABC的直角边BC在x轴负半轴上,斜边AC上的中线BD的反向延长线交y轴正半轴于点E,双曲线y=(x<0)的图象经过点A,S△BEC=8,则k=_____.

    17.如图,将一个长方形纸条折成如图的形状,若已知∠2=55°,则∠1=____.

    三、解答题(共7小题,满分69分)
    18.(10分)楼房AB后有一假山,其坡度为i=1:,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=30米,与亭子距离CE=18米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)

    19.(5分)如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.
    (1)求抛物线的解析式;
    (2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;
    (3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.

    20.(8分)如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE.若DE:AC=3:5,求的值.

    21.(10分)旋转变换是解决数学问题中一种重要的思想方法,通过旋转变换可以将分散的条件集中到一起,从而方便解决问题.
    已知,△ABC中,AB=AC,∠BAC=α,点D、E在边BC上,且∠DAE=α.
    (1)如图1,当α=60°时,将△AEC绕点A顺时针旋转60°到△AFB的位置,连接DF,
    ①求∠DAF的度数;
    ②求证:△ADE≌△ADF;
    (2)如图2,当α=90°时,猜想BD、DE、CE的数量关系,并说明理由;
    (3)如图3,当α=120°,BD=4,CE=5时,请直接写出DE的长为   .

    22.(10分)我市某学校在“行读石鼓阁”研学活动中,参观了我市中华石鼓园,石鼓阁是宝鸡城市新地标.建筑面积7200平方米,为我国西北第一高阁.秦汉高台门阙的建筑风格,追求稳定之中的飞扬灵动,深厚之中的巧妙组合,使景观功能和标志功能融为一体.小亮想知道石鼓阁的高是多少,他和同学李梅对石鼓阁进行测量.测量方案如下:如图,李梅在小亮和“石鼓阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,李梅看着镜面上的标记,她来回走动,走到点D时,看到“石鼓阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得李梅眼睛与地面的高度ED=1.6米,CD=2.2米,然后,在阳光下,小亮从D点沿DM方向走了29.4米,此时“石鼓阁”影子与小亮的影子顶端恰好重合,测得小亮身高1.7米,影长FH=3.4米.已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“石鼓阁”的高AB的长度.

    23.(12分)如图,在Rt△ABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O交AC于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交⊙O于点G,DF⊥DG,且交BC于点F.

    (1)求证:AE=BF;
    (2)连接GB,EF,求证:GB∥EF;
    (3)若AE=1,EB=2,求DG的长.
    24.(14分)如图,AE∥FD,AE=FD,B、C在直线EF上,且BE=CF,
    (1)求证:△ABE≌△DCF;
    (2)试证明:以A、B、D、C为顶点的四边形是平行四边形.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    科学记数法的表示形式为a×10 的形式,其中1≤a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    0.000 000 04=4×10,
    故选C
    【点睛】
    此题考查科学记数法,难度不大
    2、C
    【解析】
    由题意得,4−x⩾0,x−4⩾0,
    解得x=4,则y=3,则=,
    故选:C.
    3、A
    【解析】
    ∵xa=2,xb=3,
    ∴x3a−2b=(xa)3÷(xb)2=8÷9= ,
    故选A.
    4、C
    【解析】
    试题分析:根据n边形的内角和公式(n-2)×180º 可得八边形的内角和为(8-2)×180º=1080º,故答案选C.
    考点:n边形的内角和公式.
    5、B
    【解析】
    根据题意可知DE是AC的垂直平分线,CD=DA.即可得到∠DCE=∠A,而∠A和∠B互余可求出∠A,由三角形外角性质即可求出∠CDA的度数.
    【详解】
    解:∵DE是AC的垂直平分线,
    ∴DA=DC,
    ∴∠DCE=∠A,
    ∵∠ACB=90°,∠B=34°,
    ∴∠A=56°,
    ∴∠CDA=∠DCE+∠A=112°,
    故选B.
    【点睛】
    本题考查作图-基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形有关角的性质等知识,解题的关键是熟练运用这些知识解决问题,属于中考常考题型.
    6、B
    【解析】
    根据合并同类项的法则、平方差公式、幂的乘方与积的乘方运算法则对各选项依次进行判断即可解答.
    【详解】
    A. 2a2+3a2=5a2,故本选项错误;
    B. (−)-2=4,正确;
    C. (a+b)(−a−b)=−a2−2ab−b2,故本选项错误;
    D. 8ab÷4ab=2,故本选项错误.
    故答案选B.
    【点睛】
    本题考查了合并同类项的法则、平方差公式、幂的乘方与积的乘方运算法则,解题的关键是熟练的掌握合并同类项的法则、平方差公式、幂的乘方与积的乘方运算法则.
    7、C
    【解析】
    根据位似图形的性质,得出①△ABC与△DEF是位似图形进而根据位似图形一定是相似图形得出 ②△ABC与△DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案.
    【详解】
    解:根据位似性质得出①△ABC与△DEF是位似图形,
    ②△ABC与△DEF是相似图形,
    ∵将△ABC的三边缩小的原来的,
    ∴△ABC与△DEF的周长比为2:1,
    故③选项错误,
    根据面积比等于相似比的平方,
    ∴④△ABC与△DEF的面积比为4:1.
    故选C.
    【点睛】
    此题主要考查了位似图形的性质,中等难度,熟悉位似图形的性质是解决问题的关键.
    8、A
    【解析】
    解:设去年居民用水价格为x元/cm1,根据题意列方程:
    ,故选A.
    9、C
    【解析】
    过点A作AF⊥DE于F,根据角平分线上的点到角的两边距离相等可得AF=AB,利用全等三角形的判定和性质以及矩形的性质解答即可.
    【详解】
    解:如图,过点A作AF⊥DE于F,

    在矩形ABCD中,AB=CD,
    ∵AE平分∠BED,
    ∴AF=AB,
    ∵BC=2AB,
    ∴BC=2AF,
    ∴∠ADF=30°,
    在△AFD与△DCE中
    ∵∠C=∠AFD=90°,
    ∠ADF=∠DEC,
    AF=DC,,
    ∴△AFD≌△DCE(AAS),
    ∴△CDE的面积=△AFD的面积=
    ∵矩形ABCD的面积=AB•BC=2AB2,
    ∴2△ABE的面积=矩形ABCD的面积﹣2△CDE的面积=(2﹣)AB2,
    ∴△ABE的面积=,
    ∴,
    故选:C.
    【点睛】
    本题考查了矩形的性质,角平分线上的点到角的两边距离相等的性质,以及全等三角形的判定与性质,关键是根据角平分线上的点到角的两边距离相等可得AF=AB.
    10、D
    【解析】
    由m≤x≤n和mn<0知m<0,n>0,据此得最小值为1m为负数,最大值为1n为正数.将最大值为1n分两种情况,①顶点纵坐标取到最大值,结合图象最小值只能由x=m时求出.②顶点纵坐标取不到最大值,结合图象最大值只能由x=n求出,最小值只能由x=m求出.
    【详解】
    解:二次函数y=﹣(x﹣1)1+5的大致图象如下:

    ①当m≤0≤x≤n<1时,当x=m时y取最小值,即1m=﹣(m﹣1)1+5,
    解得:m=﹣1.
    当x=n时y取最大值,即1n=﹣(n﹣1)1+5, 解得:n=1或n=﹣1(均不合题意,舍去);
    ②当m≤0≤x≤1≤n时,当x=m时y取最小值,即1m=﹣(m﹣1)1+5,
    解得:m=﹣1.
    当x=1时y取最大值,即1n=﹣(1﹣1)1+5, 解得:n=,
    或x=n时y取最小值,x=1时y取最大值,
    1m=-(n-1)1+5,n=,
    ∴m=,
    ∵m<0,
    ∴此种情形不合题意,
    所以m+n=﹣1+=.

    二、填空题(共7小题,每小题3分,满分21分)
    11、10或1
    【解析】
    分水位在圆心下以及圆心上两种情况,画出符合题意的图形进行求解即可得.
    【详解】
    如图,作半径于C,连接OB,

    由垂径定理得:=AB=×60=30cm,
    在中,,
    当水位上升到圆心以下时  水面宽80cm时,
    则,
    水面上升的高度为:;
    当水位上升到圆心以上时,水面上升的高度为:,
    综上可得,水面上升的高度为30cm或1cm,
    故答案为:10或1.
    【点睛】
    本题考查了垂径定理的应用,掌握垂径定理、灵活运用分类讨论的思想是解题的关键.
    12、(4,2).
    【解析】
    利用图象旋转和平移可以得到结果.
    【详解】
    解:∵△CDO绕点C逆时针旋转90°,得到△CBD′,
    则BD′=OD=2,
    ∴点D坐标为(4,6);
    当将点C与点O重合时,点C向下平移4个单位,得到△OAD′′,
    ∴点D向下平移4个单位.故点D′′坐标为(4,2),
    故答案为(4,2).

    【点睛】
    平移和旋转:平移是指在同一平面内,将一个图形整体按照某个直线方向移动一定的距离,这样的图形运动叫做图形的平移运动,简称平移.
    定义在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转.这个定点叫做旋转中心,转动的角度叫做旋转角.
    13、( , )
    【解析】
    连接AC,根据题意易证△AOC∽△COB,则,求得OC=2,即点C的坐标为(0,2),可设抛物线解析式为y=a(x+1)(x﹣4),然后将C点坐标代入求解,最后将解析式化为顶点式即可.
    【详解】
    解:连接AC,
    ∵A、B两点的横坐标分别为﹣1,4,
    ∴OA=1,OB=4,
    ∵∠ACB=90°,
    ∴∠CAB+∠ABC=90°,
    ∵CO⊥AB,
    ∴∠ABC+∠BCO=90°,
    ∴∠CAB=∠BCO,
    又∵∠AOC=∠BOC=90°,
    ∴△AOC∽△COB,
    ∴,
    即=,
    解得OC=2,
    ∴点C的坐标为(0,2),
    ∵A、B两点的横坐标分别为﹣1,4,
    ∴设抛物线解析式为y=a(x+1)(x﹣4),
    把点C的坐标代入得,a(0+1)(0﹣4)=2,
    解得a=﹣,
    ∴y=﹣(x+1)(x﹣4)=﹣(x2﹣3x﹣4)=﹣(x﹣)2+,
    ∴此抛物线顶点的坐标为( , ).
    故答案为:( , ).

    【点睛】
    本题主要考查相似三角形的判定与性质,抛物线的顶点式,解此题的关键在于熟练掌握其知识点,利用相似三角形的性质求得关键点的坐标.
    14、
    【解析】
    作CD⊥AB,由tanA=2,设AD=x,CD=2x,根据勾股定理AC=x,则BD=,
    然后在Rt△CBD中BC2=BD2+CD2,即52=4x2+,解得x2=,则S△ABC===
    【详解】
    如图作CD⊥AB,
    ∵tanA=2,设AD=x,CD=2x,
    ∴AC=x,∴BD=,
    在Rt△CBD中BC2=BD2+CD2,
    即52=4x2+,
    x2=,
    ∴S△ABC===

    【点睛】
    此题主要考查三角函数的应用,解题的关键是根据题意作出辅助线进行求解.
    15、
    【解析】
    利用直角三角形的性质,判定三角形相似,进一步利用相似三角形的面积比等于相似比的性质解决问题.
    【详解】
    如图,

    ∵∠CAB=90°,且AD⊥BC,
    ∴∠ADB=90°,
    ∴∠CAB=∠ADB,且∠B=∠B,
    ∴△CAB∽△ADB,
    ∴(AB:BC)1=△ADB:△CAB,
    又∵S△ABC=4S△ABD,则S△ABD:S△ABC=1:4,
    ∴AB:BC=1:1.
    16、1
    【解析】
    ∵BD是Rt△ABC斜边上的中线,
    ∴BD=CD=AD,
    ∴∠DBC=∠ACB,
    又∠DBC=∠OBE,∠BOE=∠ABC=90°,
    ∴△ABC∽△EOB,

    ∴AB•OB=BC•OE,
    ∵S△BEC=×BC•OE=8,
    ∴AB•OB=1,
    ∴k=xy=AB•OB=1.
    17、1
    【解析】
    由折叠可得∠3=180°﹣2∠2,进而可得∠3的度数,然后再根据两直线平行,同旁内角互补可得∠1+∠3=180°,进而可得∠1的度数.
    【详解】
    解:由折叠可得∠3=180°﹣2∠2=180°﹣1°=70°,
    ∵AB∥CD,
    ∴∠1+∠3=180°,
    ∴∠1=180°﹣70°=1°,
    故答案为1.


    三、解答题(共7小题,满分69分)
    18、(39+9)米.
    【解析】
    过点E作EF⊥BC的延长线于F,EH⊥AB于点H,根据CE=20米,坡度为i=1:,分别求出EF、CF的长度,在Rt△AEH中求出AH,继而可得楼房AB的高.
    【详解】
    解:过点E作EF⊥BC的延长线于F,EH⊥AB于点H,
    在Rt△CEF中,∵=tan∠ECF,
    ∴∠ECF=30°,
    ∴EF=CE=10米,CF=10米,
    ∴BH=EF=10米, HE=BF=BC+CF=(25+10)米,
    在Rt△AHE中,∵∠HAE=45°,
    ∴AH=HE=(25+10)米,∴AB=AH+HB=(35+10)米.
    答:楼房AB的高为(35+10)米.

    【点睛】
    本题考查解直角三角形的应用-仰角俯角问题;坡度坡角问题,掌握概念正确计算是本题的解题关键.
    19、 (1) 抛物线的解析式为y=x2-2x+1,(2) 四边形AECP的面积的最大值是,点P(,﹣);(3) Q(4,1)或(-3,1).
    【解析】
    (1)把点A,B的坐标代入抛物线的解析式中,求b,c;(2)设P(m,m2−2m+1),根据S四边形AECP=S△AEC+S△APC,把S四边形AECP用含m式子表示,根据二次函数的性质求解;(3)设Q(t,1),分别求出点A,B,C,P的坐标,求出AB,BC,CA;用含t的式子表示出PQ,CQ,判断出∠BAC=∠PCA=45°,则要分两种情况讨论,根据相似三角形的对应边成比例求t.
    【详解】
    解:(1)将A(0,1),B(9,10)代入函数解析式得:
    ×81+9b+c=10,c=1,解得b=−2,c=1,
    所以抛物线的解析式y=x2−2x+1;
    (2)∵AC∥x轴,A(0,1),
    ∴x2−2x+1=1,解得x1=6,x2=0(舍),即C点坐标为(6,1),
    ∵点A(0,1),点B(9,10),
    ∴直线AB的解析式为y=x+1,设P(m,m2−2m+1),∴E(m,m+1),
    ∴PE=m+1−(m2−2m+1)=−m2+3m.
    ∵AC⊥PE,AC=6,
    ∴S四边形AECP=S△AEC+S△APC=AC⋅EF+AC⋅PF
    =AC⋅(EF+PF)=AC⋅EP
    =×6(−m2+3m)=−m2+9m.
    ∵0 ∴当m=时,四边形AECP的面积最大值是,此时P();
    (3)∵y=x2−2x+1=(x−3)2−2,
    P(3,−2),PF=yF−yp=3,CF=xF−xC=3,
    ∴PF=CF,∴∠PCF=45∘,
    同理可得∠EAF=45∘,∴∠PCF=∠EAF,
    ∴在直线AC上存在满足条件的点Q,
    设Q(t,1)且AB=,AC=6,CP=,
    ∵以C,P,Q为顶点的三角形与△ABC相似,
    ①当△CPQ∽△ABC时,
    CQ:AC=CP:AB,(6−t):6=,解得t=4,所以Q(4,1);
    ②当△CQP∽△ABC时,
    CQ:AB=CP:AC,(6−t)6,解得t=−3,所以Q(−3,1).
    综上所述:当点P为抛物线的顶点时,在直线AC上存在点Q,使得以C,P,Q为顶点的三角形与△ABC相似,Q点的坐标为(4,1)或(−3,1).

    【点睛】
    本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用面积的和差得出二次函数,又利用了二次函数的性质,平行于坐标轴的直线上两点间的距离是较大的坐标减较小的坐标;解(3)的关键是利用相似三角形的性质的出关于CQ的比例,要分类讨论,以防遗漏.
    20、
    【解析】
    根据翻折的性质可得∠BAC=∠EAC,再根据矩形的对边平行可得AB∥CD,根据两直线平行,内错角相等可得∠DCA=∠BAC,从而得到∠EAC=∠DCA,设AE与CD相交于F,根据等角对等边的性质可得AF=CF,再求出DF=EF,从而得到△ACF和△EDF相似,根据相似三角形得出对应边成比,设DF=3x,FC=5x,在Rt△ADF中,利用勾股定理列式求出AD,再根据矩形的对边相等求出AB,然后代入进行计算即可得解.
    【详解】
    解:∵矩形沿直线AC折叠,点B落在点E处,
    ∴CE=BC,∠BAC=∠CAE,
    ∵矩形对边AD=BC,
    ∴AD=CE,
    设AE、CD相交于点F,
    在△ADF和△CEF中,

    ∴△ADF≌△CEF(AAS),
    ∴EF=DF,
    ∵AB∥CD,
    ∴∠BAC=∠ACF,
    又∵∠BAC=∠CAE,
    ∴∠ACF=∠CAE,
    ∴AF=CF,
    ∴AC∥DE,
    ∴△ACF∽△DEF,
    ∴,
    设EF=3k,CF=5k,
    由勾股定理得CE=,
    ∴AD=BC=CE=4k,
    又∵CD=DF+CF=3k+5k=8k,
    ∴AB=CD=8k,
    ∴AD:AB=(4k):(8k)=.

    【点睛】
    本题考查了翻折变换的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,综合题难度较大,求出△ACF和△DEF相似是解题的关键,也是本题的难点.
    21、(1)①30°②见解析(2)BD2+CE2=DE2(3)
    【解析】
    (1)①利用旋转的性质得出∠FAB=∠CAE,再用角的和即可得出结论;②利用SAS判断出△ADE≌△ADF,即可得出结论;
    (2)先判断出BF=CE,∠ABF=∠ACB,再判断出∠DBF=90°,即可得出结论;
    (3)同(2)的方法判断出∠DBF=60°,再用含30度角的直角三角形求出BM,FM,最后用勾股定理即可得出结论.
    【详解】
    解:(1)①由旋转得,∠FAB=∠CAE,
    ∵∠BAD+∠CAE=∠BAC﹣∠DAE=60°﹣30°=30°,
    ∴∠DAF=∠BAD+∠BAF=∠BAD+∠CAE=30°;
    ②由旋转知,AF=AE,∠BAF=∠CAE,
    ∴∠BAF+∠BAD=∠CAE+∠BAD=∠BAC﹣∠DAE=∠DAE,
    在△ADE和△ADF中,,
    ∴△ADE≌△ADF(SAS);
    (2)BD2+CE2=DE2,
    理由:如图2,将△AEC绕点A顺时针旋转90°到△AFB的位置,连接DF,
    ∴BF=CE,∠ABF=∠ACB,
    由(1)知,△ADE≌△ADF,
    ∴DE=DF,
    ∵AB=AC,∠BAC=90°,
    ∴∠ABC=∠ACB=45°,
    ∴∠DBF=∠ABC+∠ABF=∠ABC+∠ACB=90°,
    根据勾股定理得,BD2+BF2=DF2,
    即:BD2+CE2=DE2;
    (3)如图3,将△AEC绕点A顺时针旋转90°到△AFB的位置,连接DF,
    ∴BF=CE,∠ABF=∠ACB,
    由(1)知,△ADE≌△ADF,
    ∴DE=DF,BF=CE=5,
    ∵AB=AC,∠BAC=90°,
    ∴∠ABC=∠ACB=30°,
    ∴∠DBF=∠ABC+∠ABF=∠ABC+∠ACB=60°,
    过点F作FM⊥BC于M,
    在Rt△BMF中,∠BFM=90°﹣∠DBF=30°,
    BF=5,
    ∴,
    ∵BD=4,
    ∴DM=BD﹣BM=,
    根据勾股定理得, ,
    ∴DE=DF=,
    故答案为.


    【点睛】
    此题是几何变换综合题,主要考查了旋转的性质,全等三角形的判定和性质,勾股定理,构造全等三角形和直角三角形是解本题的关键.
    22、 “石鼓阁”的高AB的长度为56m.
    【解析】
    根据题意得∠ABC=∠EDC=90°,∠ABM=∠GFH=90°,再根据反射定律可知:∠ACB=∠ECD,则△ABC∽△EDC,根据相似三角形的性质可得=,再根据∠AHB=∠GHF,可证△ABH∽△GFH,同理得=,代入数值计算即可得出结论.
    【详解】
    由题意可得:∠ABC=∠EDC=90°,∠ABM=∠GFH=90°,
    由反射定律可知:∠ACB=∠ECD,
    则△ABC∽△EDC,
    ∴=,
    即=①,
    ∵∠AHB=∠GHF,
    ∴△ABH∽△GFH,
    ∴=,即=②,
    联立①②,解得:AB=56,
    答:“石鼓阁”的高AB的长度为56m.
    【点睛】
    本题考查了相似三角形的判定与性质,解题的关键是熟练的掌握相似三角形的判定与性质.
    23、(1)详见解析;(2)详见解析;(3).
    【解析】
    (1)连接BD,由三角形ABC为等腰直角三角形,求出∠A与∠C的度数,根据AB为圆的直径,利用圆周角定理得到∠ADB为直角,即BD垂直于AC,利用直角三角形斜边上的中线等于斜边的一半,得到AD=DC=BD=AC,进而确定出∠A=∠FBD,再利用同角的余角相等得到一对角相等,利用ASA得到三角形AED与三角形BFD全等,利用全等三角形对应边相等即可得证;
    (2)连接EF,BG,由三角形AED与三角形BFD全等,得到ED=FD,进而得到三角形DEF为等腰直角三角形,利用圆周角定理及等腰直角三角形性质得到一对同位角相等,利用同位角相等两直线平行即可得证;
    (3)由全等三角形对应边相等得到AE=BF=1,在直角三角形BEF中,利用勾股定理求出EF的长,利用锐角三角形函数定义求出DE的长,利用两对角相等的三角形相似得到三角形AED与三角形GEB相似,由相似得比例,求出GE的长,由GE+ED求出GD的长即可.
    (1)证明:连接BD,
    在Rt△ABC中,∠ABC=90°,AB=BC,
    ∴∠A=∠C=45°,
    ∵AB为圆O的直径,
    ∴∠ADB=90°,即BD⊥AC,
    ∴AD=DC=BD=AC,∠CBD=∠C=45°,
    ∴∠A=∠FBD,
    ∵DF⊥DG,
    ∴∠FDG=90°,
    ∴∠FDB+∠BDG=90°,
    ∵∠EDA+∠BDG=90°,
    ∴∠EDA=∠FDB,
    在△AED和△BFD中,
    ∠A=∠FBD,AD=BD,∠EDA=∠FDB,
    ∴△AED≌△BFD(ASA),
    ∴AE=BF;
    (2)证明:连接EF,BG,

    ∵△AED≌△BFD,
    ∴DE=DF,
    ∵∠EDF=90°,
    ∴△EDF是等腰直角三角形,
    ∴∠DEF=45°,
    ∵∠G=∠A=45°,
    ∴∠G=∠DEF,
    ∴GB∥EF;
    (3)∵AE=BF,AE=1,
    ∴BF=1,
    在Rt△EBF中,∠EBF=90°,
    ∴根据勾股定理得:EF2=EB2+BF2,
    ∵EB=2,BF=1,
    ∴EF=,
    ∵△DEF为等腰直角三角形,∠EDF=90°,
    ∴cos∠DEF=,
    ∵EF=,
    ∴DE=×,
    ∵∠G=∠A,∠GEB=∠AED,
    ∴△GEB∽△AED,
    ∴,即GE•ED=AE•EB,
    ∴•GE=2,即GE=,
    则GD=GE+ED=.
    24、(1)证明见解析;(2)证明见解析
    【解析】
    (1)根据平行线性质求出∠B=∠C,等量相减求出BE=CF,根据SAS推出两三角形全等即可;
    (2)借助(1)中结论△ABE≌△DCF,可证出AE平行且等于DF,即可证出结论.
    证明:(1)如图,∵AB∥CD,
    ∴∠B=∠C.
    ∵BF=CE
    ∴BE=CF
    ∵在△ABE与△DCF中,

    ∴△ABE≌△DCF(SAS);
    (2)如图,连接AF、DE.

    由(1)知,△ABE≌△DCF,
    ∴AE=DF,∠AEB=∠DFC,
    ∴∠AEF=∠DFE,
    ∴AE∥DF,
    ∴以A、F、D、E为顶点的四边形是平行四边形.

    相关试卷

    四川省眉山市东坡区东坡中学2021-2022学年十校联考最后数学试题含解析: 这是一份四川省眉山市东坡区东坡中学2021-2022学年十校联考最后数学试题含解析,共22页。

    四川省眉山市东坡区东坡区东坡中学2022年中考数学四模试卷含解析: 这是一份四川省眉山市东坡区东坡区东坡中学2022年中考数学四模试卷含解析,共22页。试卷主要包含了若,,则的值是,若分式的值为0,则x的值为等内容,欢迎下载使用。

    2022年四川省眉山市东坡区苏辙中学中考数学仿真试卷含解析: 这是一份2022年四川省眉山市东坡区苏辙中学中考数学仿真试卷含解析,共20页。试卷主要包含了运用图形变化的方法研究下列问题,2018的相反数是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map