|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年四川省眉山市东坡区苏辙中学中考数学仿真试卷含解析
    立即下载
    加入资料篮
    2022年四川省眉山市东坡区苏辙中学中考数学仿真试卷含解析01
    2022年四川省眉山市东坡区苏辙中学中考数学仿真试卷含解析02
    2022年四川省眉山市东坡区苏辙中学中考数学仿真试卷含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年四川省眉山市东坡区苏辙中学中考数学仿真试卷含解析

    展开
    这是一份2022年四川省眉山市东坡区苏辙中学中考数学仿真试卷含解析,共20页。试卷主要包含了运用图形变化的方法研究下列问题,2018的相反数是等内容,欢迎下载使用。

    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
    一、选择题(共10小题,每小题3分,共30分)
    1.如图,矩形ABCD中,AB=3,AD=,将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,此时恰好四边形AEHB为菱形,连接CH交FG于点M,则HM=( )
    A.B.1C.D.
    2.下列命题中错误的有( )个
    (1)等腰三角形的两个底角相等
    (2)对角线相等且互相垂直的四边形是正方形
    (3)对角线相等的四边形为矩形
    (4)圆的切线垂直于半径
    (5)平分弦的直径垂直于弦
    A.1 B.2 C.3 D.4
    3.下列实数中,最小的数是( )
    A.B.C.0D.
    4.计算tan30°的值等于( )
    A. B. C. D.
    5.运用图形变化的方法研究下列问题:如图,AB是⊙O的直径,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.则图中阴影部分的面积是( )
    A.B.C.D.
    6. “车辆随机到达一个路口,遇到红灯”这个事件是( )
    A.不可能事件B.不确定事件C.确定事件D.必然事件
    7.下列图形中,阴影部分面积最大的是
    A.B.C.D.
    8.2018的相反数是( )
    A.B.2018C.-2018D.
    9.如图,钓鱼竿AC长6m,露在水面上的鱼线BC长m,某钓者想看看鱼钓上的情况,把鱼竿AC转动到AC'的位置,此时露在水面上的鱼线B′C′为m,则鱼竿转过的角度是( )
    A.60°B.45°C.15°D.90°
    10.如图,A,C,E,G四点在同一直线上,分别以线段AC,CE,EG为边在AG同侧作等边三角形△ABC,△CDE,△EFG,连接AF,分别交BC,DC,DE于点H,I,J,若AC=1,CE=2,EG=3,则△DIJ的面积是( )
    A.B.C.D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动,以下是根据调查结果绘制的统计图表的一部分
    那么,其中最喜欢足球的学生数占被调查总人数的百分比为____________%
    12.用配方法将方程x2+10x﹣11=0化成(x+m)2=n的形式(m、n为常数),则m+n=_____.
    13.在正方形铁皮上剪下一个扇形和一个半径为1cm的圆形,使之恰好围成一个圆锥,则圆锥的高为______.
    14.关于的一元二次方程有两个相等的实数根,则的值等于_____.
    15.如图,在ABC中,AB=AC=6,∠BAC=90°,点D、E为BC边上的两点,分别沿AD、AE折叠,B、C两点重合于点F,若DE=5,则AD的长为_____.
    16.一组数:2,1,3,,7,,23,…,满足“从第三个数起,前两个数依次为、,紧随其后的数就是”,例如这组数中的第三个数“3”是由“”得到的,那么这组数中表示的数为______.
    三、解答题(共8题,共72分)
    17.(8分)已知二次函数y=a(x+m)2的顶点坐标为(﹣1,0),且过点A(﹣2,﹣).
    (1)求这个二次函数的解析式;
    (2)点B(2,﹣2)在这个函数图象上吗?
    (3)你能通过左,右平移函数图象,使它过点B吗?若能,请写出平移方案.
    18.(8分)在“双十二”期间,两个超市开展促销活动,活动方式如下:
    超市:购物金额打9折后,若超过2000元再优惠300元;
    超市:购物金额打8折.
    某学校计划购买某品牌的篮球做奖品,该品牌的篮球在两个超市的标价相同,根据商场的活动方式:
    (1)若一次性付款4200元购买这种篮球,则在商场购买的数量比在商场购买的数量多5个,请求出这种篮球的标价;
    (2)学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少.(直接写出方案)
    19.(8分)如图,△ABC是等边三角形,AO⊥BC,垂足为点O,⊙O与AC相切于点D,BE⊥AB交AC的延长线于点E,与⊙O相交于G、F两点.
    (1)求证:AB与⊙O相切;
    (2)若等边三角形ABC的边长是4,求线段BF的长?
    20.(8分)如图,AB是⊙O的直径,BE是弦,点D是弦BE上一点,连接OD并延长交⊙O于点C,连接BC,过点D作FD⊥OC交⊙O的切线EF于点F.
    (1)求证:∠CBE=∠F;
    (2)若⊙O的半径是2,点D是OC中点,∠CBE=15°,求线段EF的长.
    21.(8分)关于x的一元二次方程x2+(m-1)x-(2m+3)=1.
    (1)求证:方程总有两个不相等的实数根;
    (2)写出一个m的值,并求出此时方程的根.
    22.(10分)汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完,赢得三局及以上的队获胜.假如甲,乙两队每局获胜的机会相同.
    (1)若前四局双方战成2:2,那么甲队最终获胜的概率是__________;
    (2)现甲队在前两局比赛中已取得2:0的领先,那么甲队最终获胜的概率是多少?
    23.(12分)观察下列等式:
    第1个等式:;
    第2个等式:;
    第3个等式:;
    第4个等式:;

    请解答下列问题:按以上规律列出第5个等式:a5= = ;用含有n的代数式表示第n个等式:an= = (n为正整数);求a1+a2+a3+a4+…+a100的值.
    24.解不等式组
    请结合题意填空,完成本题的解答.
    (I)解不等式(1),得 ;
    (II)解不等式(2),得 ;
    (III)把不等式①和②的解集在数轴上表示出来:
    (IV)原不等式组的解集为 .
    参考答案
    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    由旋转的性质得到AB=BE,根据菱形的性质得到AE=AB,推出△ABE是等边三角形,得到AB=3,AD=,根据三角函数的定义得到∠BAC=30°,求得AC⊥BE,推出C在对角线AH上,得到A,C,H共线,于是得到结论.
    【详解】
    如图,连接AC交BE于点O,
    ∵将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,
    ∴AB=BE,
    ∵四边形AEHB为菱形,
    ∴AE=AB,
    ∴AB=AE=BE,
    ∴△ABE是等边三角形,
    ∵AB=3,AD=,
    ∴tan∠CAB=,
    ∴∠BAC=30°,
    ∴AC⊥BE,
    ∴C在对角线AH上,
    ∴A,C,H共线,
    ∴AO=OH=AB=,
    ∵OC=BC=,
    ∵∠COB=∠OBG=∠G=90°,
    ∴四边形OBGM是矩形,
    ∴OM=BG=BC=,
    ∴HM=OH﹣OM=,
    故选D.
    【点睛】
    本题考查了旋转的性质,菱形的性质,等边三角形的判定与性质,解直角三角形的应用等,熟练掌握和灵活运用相关的知识是解题的关键.
    2、D
    【解析】分析:根据等腰三角形的性质、正方形的判定定理、矩形的判定定理、切线的性质、垂径定理判断即可.
    详解:等腰三角形的两个底角相等,(1)正确;
    对角线相等、互相平分且互相垂直的四边形是正方形,(2)错误;
    对角线相等的平行四边形为矩形,(3)错误;
    圆的切线垂直于过切点的半径,(4)错误;
    平分弦(不是直径)的直径垂直于弦,(5)错误.
    故选D.
    点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
    3、B
    【解析】
    根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,进行比较.
    【详解】
    ∵<-2<0<,
    ∴最小的数是-π,
    故选B.
    【点睛】
    此题主要考查了比较实数的大小,要熟练掌握任意两个实数比较大小的方法.(1)正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.(2)利用数轴也可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.
    4、C
    【解析】
    tan30°= .故选C.
    5、A
    【解析】
    【分析】作直径CG,连接OD、OE、OF、DG,则根据圆周角定理求得DG的长,证明DG=EF,则S扇形ODG=S扇形OEF,然后根据三角形的面积公式证明S△OCD=S△ACD,S△OEF=S△AEF,则S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆,即可求解.
    【详解】作直径CG,连接OD、OE、OF、DG.
    ∵CG是圆的直径,
    ∴∠CDG=90°,则DG==8,
    又∵EF=8,
    ∴DG=EF,
    ∴,
    ∴S扇形ODG=S扇形OEF,
    ∵AB∥CD∥EF,
    ∴S△OCD=S△ACD,S△OEF=S△AEF,
    ∴S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆=π×52=,
    故选A.
    【点睛】本题考查扇形面积的计算,圆周角定理.本题中找出两个阴影部分面积之间的联系是解题的关键.
    6、B
    【解析】
    根据事件发生的可能性大小判断相应事件的类型即可.
    【详解】
    “车辆随机到达一个路口,遇到红灯”是随机事件.
    故选:.
    【点睛】
    本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的实际;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
    7、C
    【解析】
    分别根据反比例函数系数k的几何意义以及三角形面积求法以及梯形面积求法得出即可:
    【详解】
    A、根据反比例函数系数k的几何意义,阴影部分面积和为:xy=1.
    B、根据反比例函数系数k的几何意义,阴影部分面积和为:.
    C、如图,过点M作MA⊥x轴于点A,过点N作NB⊥x轴于点B,
    根据反比例函数系数k的几何意义,S△OAM=S△OAM=,从而阴影部分面积和为梯形MABN的面积:.
    D、根据M,N点的坐标以及三角形面积求法得出,阴影部分面积为:.
    综上所述,阴影部分面积最大的是C.故选C.
    8、C
    【解析】
    【分析】根据只有符号不同的两个数互为相反数进行解答即可得.
    【详解】2018与-2018只有符号不同,
    由相反数的定义可得2018的相反数是-2018,
    故选C.
    【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.
    9、C
    【解析】
    试题解析:∵sin∠CAB=
    ∴∠CAB=45°.
    ∵,
    ∴∠C′AB′=60°.
    ∴∠CAC′=60°-45°=15°,
    鱼竿转过的角度是15°.
    故选C.
    考点:解直角三角形的应用.
    10、A
    【解析】
    根据等边三角形的性质得到FG=EG=3,∠AGF=∠FEG=60°,根据三角形的内角和得到∠AFG=90°,根据相似三角形的性质得到==,==,根据三角形的面积公式即可得到结论.
    【详解】
    ∵AC=1,CE=2,EG=3,
    ∴AG=6,
    ∵△EFG是等边三角形,
    ∴FG=EG=3,∠AGF=∠FEG=60°,
    ∵AE=EF=3,
    ∴∠FAG=∠AFE=30°,
    ∴∠AFG=90°,
    ∵△CDE是等边三角形,
    ∴∠DEC=60°,
    ∴∠AJE=90°,JE∥FG,
    ∴△AJE∽△AFG,
    ∴==,
    ∴EJ=,
    ∵∠BCA=∠DCE=∠FEG=60°,
    ∴∠BCD=∠DEF=60°,
    ∴∠ACI=∠AEF=120°,
    ∵∠IAC=∠FAE,
    ∴△ACI∽△AEF,
    ∴==,
    ∴CI=1,DI=1,DJ=,
    ∴IJ=,
    ∴=•DI•IJ=××.
    故选:A.
    【点睛】
    本题考查了等边三角形的性质,相似三角形的判定和性质,三角形的面积的计算,熟练掌握相似三角形的性质和判定是解题的关键.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、1%
    【解析】
    依据最喜欢羽毛球的学生数以及占被调查总人数的百分比,即可得到被调查总人数,进而得出最喜欢篮球的学生数以及最喜欢足球的学生数占被调查总人数的百分比.
    【详解】
    ∵被调查学生的总数为10÷20%=50人,
    ∴最喜欢篮球的有50×32%=16人,
    则最喜欢足球的学生数占被调查总人数的百分比=×100%=1%,
    故答案为:1.
    【点睛】
    本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.
    12、1
    【解析】
    方程常数项移到右边,两边加上25配方得到结果,求出m与n的值即可.
    【详解】
    解:∵x2+10x-11=0,
    ∴x2+10x=11,
    则x2+10x+25=11+25,即(x+5)2=36,
    ∴m=5、n=36,
    ∴m+n=1,
    故答案为1.
    【点睛】
    此题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键.
    13、 cm
    【解析】
    利用已知得出底面圆的半径为:1cm,周长为2πcm,进而得出母线长,即可得出答案.
    【详解】
    ∵半径为1cm的圆形,
    ∴底面圆的半径为:1cm,周长为2πcm,
    扇形弧长为:2π=,
    ∴R=4,即母线为4cm,
    ∴圆锥的高为:(cm).
    故答案为cm.
    【点睛】
    此题主要考查了圆锥展开图与原图对应情况,以及勾股定理等知识,根据已知得出母线长是解决问题的关键.
    14、
    【解析】
    分析:先根据根的判别式得到a-1=,把原式变形为,然后代入即可得出结果.
    详解:由题意得:△= ,∴ ,∴,即a(a-1)=1, ∴a-1=,
    故答案为-3.
    点睛:本题考查了一元二次方程ax²+bx+c=0(a≠0)的根的判别式△=b²-4ac:当△>0, 方程有两个不相等的实数根;当△<0, 方程没有实数根;当△=0,方程有两个,相等的实数根,也考查了一元二次方程的定义.
    15、或
    【解析】
    过点A作AG⊥BC,垂足为G,根据等腰直角三角形的性质可得AG=BG=CG=6,设BD=x,则DF=BD=x,EF=7-x,然后利用勾股定理可得到关于x的方程,从而求得DG的长,继而可求得AD的长.
    【详解】
    如图所示,过点A作AG⊥BC,垂足为G,
    ∵AB=AC=6,∠BAC=90°,
    ∴BC==12,
    ∵AB=AC,AG⊥BC,
    ∴AG=BG=CG=6,
    设BD=x,则EC=12-DE-BD=12-5-x=7-x,
    由翻折的性质可知:∠DFA=∠B=∠C=∠AFE=45°,DB=DF,EF=FC,
    ∴DF=x,EF=7-x,
    在Rt△DEF中,DE2=DF2+EF2,即25=x2+(7-x)2,
    解得:x=3或x=4,
    当BD=3时,DG=3,AD=,
    当BD=4时,DG=2,AD=,
    ∴AD的长为或,
    故答案为:或.
    【点睛】
    本题考查了翻折的性质、勾股定理的应用、等腰直角三角形的性质,正确添加辅助线,灵活运用勾股定理是解题的关键.
    16、-9.
    【解析】
    根据题中给出的运算法则按照顺序求解即可.
    【详解】
    解:根据题意,得:,.
    故答案为:-9.
    【点睛】
    本题考查了有理数的运算,理解题意、弄清题目给出的运算法则是正确解题的关键.
    三、解答题(共8题,共72分)
    17、(1)y=﹣(x+1)1;(1)点B(1,﹣1)不在这个函数的图象上;(3)抛物线向左平移1个单位或平移5个单位函数,即可过点B;
    【解析】
    (1)根据待定系数法即可得出二次函数的解析式;
    (1)代入B(1,-1)即可判断;
    (3)根据题意设平移后的解析式为y=-(x+1+m)1,代入B的坐标,求得m的植即可.
    【详解】
    解:(1)∵二次函数y=a(x+m)1的顶点坐标为(﹣1,0),
    ∴m=1,
    ∴二次函数y=a(x+1)1,
    把点A(﹣1,﹣)代入得a=﹣,
    则抛物线的解析式为:y=﹣(x+1)1.
    (1)把x=1代入y=﹣(x+1)1得y=﹣≠﹣1,
    所以,点B(1,﹣1)不在这个函数的图象上;
    (3)根据题意设平移后的解析式为y=﹣(x+1+m)1,
    把B(1,﹣1)代入得﹣1=﹣(1+1+m)1,
    解得m=﹣1或﹣5,
    所以抛物线向左平移1个单位或平移5个单位函数,即可过点B.
    【点睛】
    本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,二次函数的性质以及图象与几何变换.
    18、(1)这种篮球的标价为每个50元;(2)见解析
    【解析】
    (1)设这种篮球的标价为每个x元,根据题意可知在B超市可买篮球个,在A超市可买篮球个,根据在B商场比在A商场多买5个列方程进行求解即可;
    (2)分情况,单独在A超市买100个、单独在B超市买100个、两家超市共买100个进行讨论即可得.
    【详解】
    (1)设这种篮球的标价为每个x元,
    依题意,得,
    解得:x=50,
    经检验:x=50是原方程的解,且符合题意,
    答:这种篮球的标价为每个50元;
    (2)购买100个篮球,最少的费用为3850元,
    单独在A超市一次买100个,则需要费用:100×50×0.9-300=4200元,
    在A超市分两次购买,每次各买50个,则需要费用:2(50×50×0.9-300)=3900元,
    单独在B超市购买:100×50×0.8=4000元,
    在A、B两个超市共买100个,
    根据A超市的方案可知在A超市一次购买:=44,即购买45个时花费最小,为45×50×0.9-300=1725元,两次购买,每次各买45个,需要1725×2=3450元,其余10个在B超市购买,需要10×50×0.8=400元,这样一共需要3450+400=3850元,
    综上可知最少费用的购买方案:在A超市分两次购买,每次购买45个篮球,费用共为3450元;在B超市购买10个,费用400元,两超市购买100个篮球总费用3850元.
    【点睛】
    本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.
    19、(2)证明见试题解析;(2).
    【解析】
    (2)过点O作OM⊥AB于M,证明OM=圆的半径OD即可;
    (2)过点O作ON⊥BE,垂足是N,连接OF,得到四边形OMBN是矩形,在直角△OBM中利用三角函数求得OM和BM的长,进而求得BN和ON的长,在直角△ONF中利用勾股定理求得NF,则BF即可求解.
    【详解】
    解:(2)过点O作OM⊥AB,垂足是M.
    ∵⊙O与AC相切于点D,
    ∴OD⊥AC,
    ∴∠ADO=∠AMO=90°.
    ∵△ABC是等边三角形,
    ∴∠DAO=∠MAO,
    ∴OM=OD,
    ∴AB与⊙O相切;
    (2)过点O作ON⊥BE,垂足是N,连接OF.
    ∵O是BC的中点,
    ∴OB=2.在直角△OBM中,∠MBO=60°,
    ∴∠MOB=30°, BM=OB=2,
    OM=BM =,
    ∵BE⊥AB,
    ∴四边形OMBN是矩形,
    ∴ON=BM=2,BN=OM=.
    ∵OF=OM=,由勾股定理得NF=.
    ∴BF=BN+NF=.
    考点:2.切线的判定与性质;2.勾股定理;3.解直角三角形;4.综合题.
    20、(1)详见解析;(1)
    【解析】
    (1)连接OE交DF于点H,由切线的性质得出∠F+∠EHF =90∘,由FD⊥OC得出∠DOH+∠DHO =90∘,依据对顶角的定义得出∠EHF=∠DHO,从而求得∠F=∠DOH,依据∠CBE=∠DOH,从而即可得证;
    (1)依据圆周角定理及其推论得出∠F=∠COE=1∠CBE =30°,求出OD的值,利用锐角三角函数的定义求出OH的值,进一步求得HE的值,利用锐角三角函数的定义进一步求得EF的值.
    【详解】
    (1)证明:连接OE交DF于点H,
    ∵EF是⊙O的切线,OE是⊙O的半径,
    ∴OE⊥EF.
    ∴∠F+∠EHF=90°.
    ∵FD⊥OC,
    ∴∠DOH+∠DHO=90°.
    ∵∠EHF=∠DHO,
    ∴∠F=∠DOH.
    ∵∠CBE=∠DOH,

    (1)解:∵∠CBE=15°,
    ∴∠F=∠COE=1∠CBE=30°.
    ∵⊙O的半径是,点D是OC中点,
    ∴.
    在Rt△ODH中,cs∠DOH=,
    ∴OH=1.
    ∴.
    在Rt△FEH中,

    【点睛】
    本题主要考查切线的性质及直角三角形的性质、圆周角定理及三角函数的应用,掌握圆周角定理和切线的性质是解题的关键.
    21、(1)见解析;(2)x1=1,x2=2
    【解析】
    (1)根据根的判别式列出关于m的不等式,求解可得;
    (2)取m=-2,代入原方程,然后解方程即可.
    【详解】
    解:(1)根据题意,△=(m-1)2-4[-(2m+2)]=m2+6m+12=(m+2)2+4,
    ∵(m+2)2+4>1,
    ∴方程总有两个不相等的实数根;
    (2)当m=-2时,由原方程得:x2-4x+2=1.
    整理,得(x-1)(x-2)=1,
    解得x1=1,x2=2.
    【点睛】
    本题主要考查根的判别式与韦达定理,一元二次方程ax2+bx+c=1(a≠1)的根与△=b2-4ac有如下关系:①当△>1时,方程有两个不相等的两个实数根;②当△=1时,方程有两个相等的两个实数根;③当△<1时,方程无实数根.
    22、(1);(2)
    【解析】
    分析:(1)直接利用概率公式求解;
    (2)画树状图展示所有8种等可能的结果数,再找出甲至少胜一局的结果数,然后根据概率公式求.
    详解:(1)甲队最终获胜的概率是;
    (2)画树状图为:
    共有8种等可能的结果数,其中甲至少胜一局的结果数为7,
    所以甲队最终获胜的概率=.
    点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
    23、(1)(2)(3)
    【解析】
    (1)(2)观察知,找等号后面的式子规律是关键:分子不变,为1;分母是两个连续奇数的乘积,它们与式子序号之间的关系为:序号的2倍减1和序号的2倍加1.
    (3)运用变化规律计算
    【详解】
    解:(1)a5=;
    (2)an=;
    (3)a1+a2+a3+a4+…+a100
    .
    24、(1)x≥;(1)x≤1;(3)答案见解析;(4)≤x≤1.
    【解析】
    分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
    【详解】
    解:(I)解不等式(1),得x≥;
    (II)解不等式(1),得x≤1;
    (III)把不等式①和②的解集在数轴上表示出来:
    (IV)原不等式组的解集为:≤x≤1.
    故答案为x≥、x≤1、≤x≤1.
    【点睛】
    本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
    相关试卷

    四川省眉山市东坡区苏辙中学2022年中考考前最后一卷数学试卷含解析: 这是一份四川省眉山市东坡区苏辙中学2022年中考考前最后一卷数学试卷含解析,共18页。试卷主要包含了方程的解是等内容,欢迎下载使用。

    四川省眉山市东坡区东坡区东坡中学2022年中考数学四模试卷含解析: 这是一份四川省眉山市东坡区东坡区东坡中学2022年中考数学四模试卷含解析,共22页。试卷主要包含了若,,则的值是,若分式的值为0,则x的值为等内容,欢迎下载使用。

    四川省眉山市东坡区东坡区东坡中学2022年中考数学模拟试题含解析: 这是一份四川省眉山市东坡区东坡区东坡中学2022年中考数学模拟试题含解析,共25页。试卷主要包含了下列运算正确的是,二次函数y=﹣等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map