所属成套资源:2023年中考数学压轴题培优教案专题(含答案解析)
2023年中考数学压轴题培优专题11 四点共圆模型(含答案解析)
展开
这是一份2023年中考数学压轴题培优专题11 四点共圆模型(含答案解析),共103页。试卷主要包含了定义等内容,欢迎下载使用。
【压轴必刷】2023年中考数学压轴大题之经典模型培优案
专题11四点共圆模型
解题策略
模型1:定点定长共圆模型
若四个点到一个定点的距离相等,则这四个点共圆.如图,若OA=OB=OC=OD,则A,B,C,D四点在以点O为圆心、OA为半径的圆上.
模型2:对角互补共圆模型
2.若一个四边形的一组对角互补,则这个四边形的四个顶点共圆.
如图,在四边形ABCD中, 若∠A+∠C=180°(或∠B+∠D=180°)则A,B,C,D四点在同一个圆上.
拓展:若一个四边形的外角等于它的内对角,则这个四边形的四个顶点共圆.
如图,在四边形ABCD中,∠CDE为外角,若∠B=∠CDE,则A,B,C,D四点在同一个圆上.
模型3:定弦定角共圆模型
若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线段的两个端点共圆
如图,点A,D在线段BC的同侧,若∠A=∠D,则A,B,C,D四点在同一个圆上.
经典例题
【例1】.(2021·全国·九年级课时练习)在边长为12cm的正方形ABCD中,点E从点D出发,沿边DC以1cm/s的速度向点C运动,同时,点F从点C出发,沿边CB以1cm/s的速度向点B运动,当点E达到点C时,两点同时停止运动,连接AE、DF交于点P,设点E. F运动时间为t秒.回答下列问题:
(1)如图1,当t为多少时,EF的长等于45cm?
(2)如图2,在点E、F运动过程中,
①求证:点A、B、F、P在同一个圆(⊙O)上;
②是否存在这样的t值,使得问题①中的⊙O与正方形ABCD的一边相切?若存在,求出t值;若不存在,请说明理由;
③请直接写出问题①中,圆心O的运动的路径长为_________.
【例2】(2022·吉林白山·八年级期末)(1)如图①,△OAB、△OCD的顶点O重合,且∠A+∠B+∠C+∠D=180°,则∠AOB+∠COD=______°;(直接写出结果)
(2)连接AD、BC,若AO、BO、CO、DO分别是四边形ABCD的四个内角的平分线.
①如图②,如果∠AOB=110°,那么∠COD的度数为_______;(直接写出结果)
②如图③,若∠AOD=∠BOC,AB与CD平行吗?为什么?
【例3】(2020·四川眉山·一模)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=12∠BAC=60°,于是BCAB=2BDAB=3;
迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.
①求证:△ADB≌△AEC;
②请直接写出线段AD,BD,CD之间的等量关系式;
拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.
①证明△CEF是等边三角形;
②若AE=5,CE=2,求BF的长.
【例4】(2022·全国·九年级课时练习)定义:有一个角是其对角一半的圆的内接四边形叫做圆美四边形,其中这个角叫做美角.已知四边形ABCD是圆美四边形.
(1)求美角∠A的度数;
(2)如图1,若⊙O的半径为5,求BD的长;
(3)如图2,若CA平分∠BCD,求证:BC+CD=AC.
培优训练
一、解答题
1.(2022·辽宁葫芦岛·一模)射线AB与直线CD交于点E,∠AED=60°,点F在直线CD上运动,连接AF,线段AF绕点A顺时针旋转60°得到AG,连接FG,EG,过点G作GH⊥AB于点H.
(1)如图1,点F和点G都在射线AB的同侧时,EG与GH的数量关系是______;
(2)如图2,点F和点G在射线AB的两侧时,线段EF,AE,GH之间有怎么样的数量关系?并证明你的结论;
(3)若点F和点G都在射线AB的同侧,AE=1,EF=2,请直接写出HG的长.
2.(2022·上海宝山·九年级期末)如图,已知正方形ABCD,将AD绕点A逆时针方向旋转n°(0
相关试卷
这是一份2023年中考数学二轮复习压轴大题培优学案专题11四点共圆模型(教师版),共100页。
这是一份中考几何模型压轴题 专题20《简单的四点共圆》,共5页。
这是一份专题11 四点共圆模型-中考数学压轴大题之经典模型培优案(全国通用),文件包含2阅读理解能力提升演练-高考英语二轮复习讲义+分层训练全国通用docx、1阅读理解题型解答策略-高考英语二轮复习讲义+分层训练全国通用docx等2份试卷配套教学资源,其中试卷共147页, 欢迎下载使用。