年终活动
搜索
    上传资料 赚现金

    山东省枣庄市薛城区舜耕中学2022年中考三模数学试题含解析

    立即下载
    加入资料篮
    山东省枣庄市薛城区舜耕中学2022年中考三模数学试题含解析第1页
    山东省枣庄市薛城区舜耕中学2022年中考三模数学试题含解析第2页
    山东省枣庄市薛城区舜耕中学2022年中考三模数学试题含解析第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山东省枣庄市薛城区舜耕中学2022年中考三模数学试题含解析

    展开

    这是一份山东省枣庄市薛城区舜耕中学2022年中考三模数学试题含解析,共22页。试卷主要包含了关于二次函数,下列说法正确的是,的倒数是,如图所示,有一条线段是.等内容,欢迎下载使用。
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.﹣18的倒数是( )
    A.18B.﹣18C.-D.
    2.下列各运算中,计算正确的是( )
    A.a12÷a3=a4B.(3a2)3=9a6
    C.(a﹣b)2=a2﹣ab+b2D.2a•3a=6a2
    3.某机构调查显示,深圳市20万初中生中,沉迷于手机上网的初中生约有16000人,则这部分沉迷于手机上网的初中生数量,用科学记数法可表示为( )
    A.1.6×104人B.1.6×105人C.0.16×105人D.16×103人
    4.如图,矩形OABC有两边在坐标轴上,点D、E分别为AB、BC的中点,反比例函数y=(x<0)的图象经过点D、E.若△BDE的面积为1,则k的值是( )
    A.﹣8B.﹣4C.4D.8
    5.若一组数据2,3,4,5,x的平均数与中位数相等,则实数x的值不可能是( )
    A.6B.3.5C.2.5D.1
    6.关于二次函数,下列说法正确的是( )
    A.图像与轴的交点坐标为B.图像的对称轴在轴的右侧
    C.当时,的值随值的增大而减小D.的最小值为-3
    7.在,,0,1这四个数中,最小的数是
    A.B.C.0D.1
    8.某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x元,则下面所列方程中正确的是( )
    A.B.
    C.D.
    9.的倒数是( )
    A.B.3C.D.
    10.如图所示,有一条线段是()的中线,该线段是( ).

    A.线段GHB.线段ADC.线段AED.线段AF
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,用10 m长的铁丝网围成一个一面靠墙的矩形养殖场,其养殖场的最大面积________m1.
    12.如图,点A在双曲线y=的第一象限的那一支上,AB垂直于y轴与点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为_____.
    13.分解因式:4a2﹣1=_____.
    14.分解因式:x2y﹣6xy+9y=_____.
    15.如图,反比例函数y=的图象上,点A是该图象第一象限分支上的动点,连结AO并延长交另一支于点B,以AB为斜边作等腰直角△ABC,顶点C在第四象限,AC与x轴交于点P,连结BP,在点A运动过程中,当BP平分∠ABC时,点A的坐标为_____.
    16.如图,四边形ACDF是正方形,和都是直角,且点三点共线,,则阴影部分的面积是__________.
    17.不等式5﹣2x<1的解集为_____.
    三、解答题(共7小题,满分69分)
    18.(10分)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.
    (1)观察猜想
    图1中,线段PM与PN的数量关系是 ,位置关系是 ;
    (2)探究证明
    把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;
    (3)拓展延伸
    把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.
    19.(5分)如图,AB是圆O的直径,AC是圆O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D,CD=2.
    (1)求∠A的度数.
    (2)求图中阴影部分的面积.
    20.(8分)在阳光体育活动时间,小亮、小莹、小芳和大刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场.
    (1)如果确定小亮打第一场,再从其余三人中随机选取一人打第一场,求恰好选中大刚的概率;
    (2)如果确定小亮做裁判,用“手心、手背”的方法决定其余三人哪两人打第一场.游戏规则是:三人同时伸“手心、手背”中的一种手势,如果恰好有两人伸出的手势相同,那么这两人上场,否则重新开始,这三人伸出“手心”或“手背”都是随机的,请用画树状图的方法求小莹和小芳打第一场的概率.
    21.(10分)如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.
    (1)求抛物线的解析式.
    (2)在图①中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?
    (3)在图②中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?
    22.(10分)已知:如图,梯形ABCD中,AD∥BC,DE∥AB,与对角线交于点,∥,且FG=EF.
    (1)求证:四边形是菱形;
    (2)联结AE,又知AC⊥ED,求证: .
    23.(12分)4月23日是世界读书日,习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气。”某校响应号召,鼓励师生利用课余时间广泛阅读,该校文学社为了解学生课外阅读的情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:
    收集数据 从学校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位:min):
    30 60 81 50 40 110 130 146 90 100
    60 81 120 140 70 81 10 20 100 81
    整理数据 按如下分段整理样本数据并补全表格:
    分析数据 补全下列表格中的统计量:
    得出结论
    (1)用样本中的统计量估计该校学生每周用于课外阅读时间的情况等级为 ;
    (2)如果该校现有学生400人,估计等级为“”的学生有多少名?
    (3)假设平均阅读一本课外书的时间为160分钟,请你选择一种统计量估计该校学生每人一年 (按52周计算)平均阅读多少本课外书?
    24.(14分)如今很多初中生购买饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:
    A:自带白开水;B:瓶装矿泉水;C:碳酸饮料;D:非碳酸饮料.
    根据统计结果绘制如下两个统计图(如图),根据统计图提供的信息,解答下列问题:
    请你补全条形统计图;在扇形统计图中,求“碳酸饮料”所在的扇形的圆心角的度数;为了养成良好的生活习惯,班主任决定在自带白开水的5名同学(男生2人,女生3人)中随机抽取2名同学担任生活监督员,请用列表法或树状图法求出恰好抽到一男一女的概率.
    参考答案
    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    根据乘积为1的两个数互为倒数,可得一个数的倒数.
    【详解】
    ∵-18=1,
    ∴﹣18的倒数是,
    故选C.
    【点睛】
    本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.
    2、D
    【解析】
    【分析】根据同底数幂的除法、积的乘方、完全平方公式、单项式乘法的法则逐项计算即可得.
    【详解】A、原式=a9,故A选项错误,不符合题意;
    B、原式=27a6,故B选项错误,不符合题意;
    C、原式=a2﹣2ab+b2,故C选项错误,不符合题意;
    D、原式=6a2,故D选项正确,符合题意,
    故选D.
    【点睛】本题考查了同底数幂的除法、积的乘方、完全平方公式、单项式乘法等运算,熟练掌握各运算的运算法则是解本题的关键.
    3、A
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    用科学记数法表示16000,应记作1.6×104,
    故选A.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    4、B
    【解析】
    根据反比例函数的图象和性质结合矩形和三角形面积解答.
    【详解】
    解:作,连接.
    ∵四边形AHEB,四边形ECOH都是矩形,BE=EC,


    故选B.
    【点睛】
    此题重点考查学生对反比例函数图象和性质的理解,熟练掌握反比例函数图象和性质是解题的关键.
    5、C
    【解析】
    因为中位数的值与大小排列顺序有关,而此题中x的大小位置未定,故应该分类讨论x所处的所有位置情况:从小到大(或从大到小)排列在中间;结尾;开始的位置.
    【详解】
    (1)将这组数据从小到大的顺序排列为2,3,4,5,x,
    处于中间位置的数是4,
    ∴中位数是4,
    平均数为(2+3+4+5+x)÷5,
    ∴4=(2+3+4+5+x)÷5,
    解得x=6;符合排列顺序;
    (2)将这组数据从小到大的顺序排列后2,3,4,x,5,
    中位数是4,
    此时平均数是(2+3+4+5+x)÷5=4,
    解得x=6,不符合排列顺序;
    (3)将这组数据从小到大的顺序排列后2,3,x,4,5,
    中位数是x,
    平均数(2+3+4+5+x)÷5=x,
    解得x=3.5,符合排列顺序;
    (4)将这组数据从小到大的顺序排列后2,x,3,4,5,
    中位数是3,
    平均数(2+3+4+5+x)÷5=3,
    解得x=1,不符合排列顺序;
    (5)将这组数据从小到大的顺序排列后x,2,3,4,5,
    中位数是3,
    平均数(2+3+4+5+x)÷5=3,
    解得x=1,符合排列顺序;
    ∴x的值为6、3.5或1.
    故选C.
    【点睛】
    考查了确定一组数据的中位数,涉及到分类讨论思想,较难,要明确中位数的值与大小排列顺序有关,一些学生往往对这个概念掌握不清楚,计算方法不明确而解答不完整.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.
    6、D
    【解析】
    分析:根据题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题.
    详解:∵y=2x2+4x-1=2(x+1)2-3,
    ∴当x=0时,y=-1,故选项A错误,
    该函数的对称轴是直线x=-1,故选项B错误,
    当x<-1时,y随x的增大而减小,故选项C错误,
    当x=-1时,y取得最小值,此时y=-3,故选项D正确,
    故选D.
    点睛:本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.
    7、A
    【解析】
    【分析】根据正数大于零,零大于负数,正数大于一切负数,即可得答案.
    【详解】由正数大于零,零大于负数,得

    最小的数是,
    故选A.
    【点睛】本题考查了有理数比较大小,利用好“正数大于零,零大于负数,两个负数绝对值大的反而小”是解题关键.
    8、B
    【解析】
    首先设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为1.2x元,根据题意可得等量关系:学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,根据等量关系列出方程,
    【详解】
    设学校购买文学类图书平均每本书的价格是x元,可得:
    故选B.
    【点睛】
    此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.
    9、A
    【解析】
    解:的倒数是.
    故选A.
    【点睛】
    本题考查倒数,掌握概念正确计算是解题关键.
    10、B
    【解析】
    根据三角形一边的中点与此边所对顶点的连线叫做三角形的中线逐一判断即可得.
    【详解】
    根据三角形中线的定义知:线段AD是△ABC的中线.
    故选B.
    【点睛】
    本题考查了三角形的中线,解题的关键是掌握三角形一边的中点与此边所对顶点的连线叫做三角形的中线.
    二、填空题(共7小题,每小题3分,满分21分)
    11、2
    【解析】
    设与墙平行的一边长为xm,则另一面为 ,
    其面积=,
    ∴最大面积为 ;
    即最大面积是2m1.
    故答案是2.
    【点睛】求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a的绝对值是较小的整数时,用配方法较好,如y=-x1-1x+5,y=3x1-6x+1等用配方法求解比较简单.
    12、.
    【解析】
    由AE=3EC,△ADE的面积为3,可知△ADC的面积为4,再根据点D为OB的中点,得到△ADC的面积为梯形BOCA面积的一半,即梯形BOCA的面积为8,设A (x,),从而
    表示出梯形BOCA的面积关于k的等式,求解即可.
    【详解】
    如图,连接DC,
    ∵AE=3EC,△ADE的面积为3,∴△CDE的面积为1.
    ∴△ADC的面积为4.
    ∵点A在双曲线y=的第一象限的那一支上,
    ∴设A点坐标为 (x,).
    ∵OC=2AB,∴OC=2x.
    ∵点D为OB的中点,∴△ADC的面积为梯形BOCA面积的一半,∴梯形BOCA的面积为8.
    ∴梯形BOCA的面积=,解得.
    【点睛】
    反比例函数综合题,曲线上点的坐标与方程的关系,相似三角形的判定和性质,同底三角形面积的计算,梯形中位线的性质.
    13、(2a+1)(2a﹣1)
    【解析】
    有两项,都能写成完全平方数的形式,并且符号相反,可用平方差公式展开.
    【详解】
    4a2﹣1=(2a+1)(2a﹣1).
    故答案为:(2a+1)(2a-1).
    【点睛】
    此题考查多项式因式分解,根据多项式的特点选择适合的分解方法是解题的关键.
    14、y(x﹣3)2
    【解析】
    本题考查因式分解.
    解答:.
    15、(,)
    【解析】
    分析:连接OC,过点A作AE⊥x轴于E,过点C作CF⊥x轴于F,则有△AOE≌△OCF,进而可得出AE=OF、OE=CF,根据角平分线的性质可得出,设点A的坐标为(a,)(a>0),由可求出a值,进而得到点A的坐标.
    详解:连接OC,过点A作AE⊥x轴于E,过点C作CF⊥x轴于F,如图所示.
    ∵△ABC为等腰直角三角形,
    ∴OA=OC,OC⊥AB,
    ∴∠AOE+∠COF=90°.
    ∵∠COF+∠OCF=90°,
    ∴∠AOE=∠OCF.
    在△AOE和△OCF中,

    ∴△AOE≌△OCF(AAS),
    ∴AE=OF,OE=CF.
    ∵BP平分∠ABC,
    ∴,
    ∴.
    设点A的坐标为(a,),
    ∴,
    解得:a=或a=-(舍去),
    ∴=,
    ∴点A的坐标为(,),
    故答案为:((,)).
    点睛:本题考查了反比例函数图象上点的坐标特征、全等三角形的判定与性质、角平分线的性质以及等腰直角三角形性质的综合运用,构造全等三角形,利用全等三角形的对应边相等是解题的关键.
    16、8
    【解析】
    【分析】证明△AEC≌△FBA,根据全等三角形对应边相等可得EC=AB=4,然后再利用三角形面积公式进行求解即可.
    【详解】∵四边形ACDF是正方形,
    ∴AC=FA,∠CAF=90°,
    ∴∠CAE+∠FAB=90°,
    ∵∠CEA=90°,∴∠CAE+∠ACE=90°,
    ∴∠ACE=∠FAB,
    又∵∠AEC=∠FBA=90°,
    ∴△AEC≌△FBA,
    ∴CE=AB=4,
    ∴S阴影==8,
    故答案为8.
    【点睛】本题考查了正方形的性质、全等三角形的判定与性质,三角形面积等,求出CE=AB是解题的关键.
    17、x>1.
    【解析】
    根据不等式的解法解答.
    【详解】
    解:,
    .
    故答案为
    【点睛】
    此题重点考查学生对不等式解的理解,掌握不等式的解法是解题的关键.
    三、解答题(共7小题,满分69分)
    18、 (1)PM=PN, PM⊥PN;(2)△PMN是等腰直角三角形,理由详见解析;(3).
    【解析】
    (1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论,再利用三角形的中位线得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出结论;
    (2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出结论;
    (3)方法1、先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.
    方法2、先判断出BD最大时,△PMN的面积最大,而BD最大是AB+AD=14,即可.
    【详解】
    解:(1)∵点P,N是BC,CD的中点,
    ∴PN∥BD,PN=BD,
    ∵点P,M是CD,DE的中点,
    ∴PM∥CE,PM=CE,
    ∵AB=AC,AD=AE,
    ∴BD=CE,
    ∴PM=PN,
    ∵PN∥BD,
    ∴∠DPN=∠ADC,
    ∵PM∥CE,
    ∴∠DPM=∠DCA,
    ∵∠BAC=90°,
    ∴∠ADC+∠ACD=90°,
    ∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,
    ∴PM⊥PN,
    故答案为:PM=PN,PM⊥PN,
    (2)由旋转知,∠BAD=∠CAE,
    ∵AB=AC,AD=AE,
    ∴△ABD≌△ACE(SAS),
    ∴∠ABD=∠ACE,BD=CE,
    同(1)的方法,利用三角形的中位线得,PN=BD,PM=CE,
    ∴PM=PN,
    ∴△PMN是等腰三角形,
    同(1)的方法得,PM∥CE,
    ∴∠DPM=∠DCE,
    同(1)的方法得,PN∥BD,
    ∴∠PNC=∠DBC,
    ∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,
    ∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC
    =∠BCE+∠DBC=∠ACB+∠ACE+∠DBC
    =∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,
    ∵∠BAC=90°,
    ∴∠ACB+∠ABC=90°,
    ∴∠MPN=90°,
    ∴△PMN是等腰直角三角形,
    (3)方法1、如图2,同(2)的方法得,△PMN是等腰直角三角形,
    ∴MN最大时,△PMN的面积最大,
    ∴DE∥BC且DE在顶点A上面,
    ∴MN最大=AM+AN,
    连接AM,AN,
    在△ADE中,AD=AE=4,∠DAE=90°,
    ∴AM=2,
    在Rt△ABC中,AB=AC=10,AN=5,
    ∴MN最大=2+5=7,
    ∴S△PMN最大=PM2=×MN2=×(7)2=.
    方法2、由(2)知,△PMN是等腰直角三角形,PM=PN=BD,
    ∴PM最大时,△PMN面积最大,
    ∴点D在BA的延长线上,
    ∴BD=AB+AD=14,
    ∴PM=7,
    ∴S△PMN最大=PM2=×72=
    【点睛】
    本题考查旋转中的三角形,关键在于对三角形的所有知识点熟练掌握.
    19、 (1) ∠A=30°;(2)
    【解析】
    (1)连接OC,由过点C的切线交AB的延长线于点D,推出OC⊥CD,推出∠OCD=90°,即∠D+∠COD=90°,由OA=OC,推出∠A=∠ACO,由∠A=∠D,推出∠A=∠ACO=∠D
    再由∠A+∠ACD+∠D=180°﹣90°=90°即可得出.
    (2)先求∠COD度数及OC长度,即可求出图中阴影部分的面积.
    【详解】
    解:(1)连结OC
    ∵CD为⊙O的切线
    ∴OC⊥CD
    ∴∠OCD=90°
    又∵OA=OC
    ∴∠A=∠ACO
    又∵∠A=∠D
    ∴∠A=∠ACO=∠D
    而∠A+∠ACD+∠D=180°﹣90°=90°
    ∴∠A=30°
    (2)由(1)知:∠D=∠A=30°
    ∴∠COD=60°
    又∵CD=2
    ∴OC=2
    ∴S阴影=.
    【点睛】
    本题考查的知识点是扇形面积的计算及切线的性质,解题的关键是熟练的掌握扇形面积的计算及切线的性质.
    20、(1)(2)
    【解析】
    (1)由小亮打第一场,再从其余三人中随机选取一人打第一场,求出恰好选中大刚的概率即可;
    (2)画树状图得出所有等可能的情况数,找出小莹和小芳伸“手心”或“手背”恰好相同的情况数,即可求出所求的概率.
    【详解】
    解:(1)∵确定小亮打第一场,
    ∴再从小莹,小芳和大刚中随机选取一人打第一场,恰好选中大刚的概率为;
    (2)列表如下:
    所有等可能的情况有8种,其中小莹和小芳伸“手心”或“手背”恰好相同且与大刚不同的结果有2个,
    则小莹与小芳打第一场的概率为.
    【点睛】
    本题主要考查了列表法与树状图法;概率公式.
    21、(1)y=﹣x2+2x+3;(2)当t=或t=时,△PCQ为直角三角形;(3)当t=2时,△ACQ的面积最大,最大值是1.
    【解析】
    (1)根据抛物线的对称轴与矩形的性质可得点A的坐标,根据待定系数法可得抛物线的解析式;
    (2)先根据勾股定理可得CE,再分两种情况:当∠QPC=90°时;当∠PQC=90°时;讨论可得△PCQ为直角三角形时t的值;
    (3)根据待定系数法可得直线AC的解析式,根据S△ACQ=S△AFQ+S△CPQ可得S△ACQ==﹣(t﹣2)2+1,依此即可求解.
    【详解】
    解:(1)∵抛物线的对称轴为x=1,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4),点A在DE上,
    ∴点A坐标为(1,4),
    设抛物线的解析式为y=a(x﹣1)2+4,把C(3,0)代入抛物线的解析式,可得a(3﹣1)2+4=0,解得a=﹣1.
    故抛物线的解析式为y=﹣(x﹣1)2+4,即y=﹣x2+2x+3;
    (2)依题意有:OC=3,OE=4,
    ∴CE===5,
    当∠QPC=90°时,
    ∵cs∠QPC=,
    ∴,解得t=;
    当∠PQC=90°时,
    ∵cs∠QCP=,
    ∴,解得t=.
    ∴当t=或 t=时,△PCQ为直角三角形;
    (3)∵A(1,4),C(3,0),
    设直线AC的解析式为y=kx+b,则有:
    ,解得.故直线AC的解析式为y=﹣2x+2.
    ∵P(1,4﹣t),将y=4﹣t代入y=﹣2x+2中,得x=1+,
    ∴Q点的横坐标为1+,将x=1+ 代入y=﹣(x﹣1)2+4 中,得y=4﹣.
    ∴Q点的纵坐标为4﹣,
    ∴QF=(4﹣)﹣(4﹣t)=t﹣,
    ∴S△ACQ =S△AFQ +S△CFQ
    =FQ•AG+FQ•DG,
    =FQ(AG+DG),
    =FQ•AD,
    =×2(t﹣),
    =﹣(t﹣2)2+1,
    ∴当t=2时,△ACQ的面积最大,最大值是1.
    【点睛】
    考查了二次函数综合题,涉及的知识点有:抛物线的对称轴,矩形的性质,待定系数法求抛物线的解析式,待定系数法求直线的解析式,勾股定理,锐角三角函数,三角形面积,二次函数的最值,方程思想以及分类思想的运用.
    22、 (1)见解析;(2)见解析
    【解析】
    分析:(1)由两组对边分别平行的四边形是平行四边形,得到是平行四边形.
    再由平行线分线段成比例定理得到:, ,=,即可得到结论;
    (2)连接,与交于点.由菱形的性质得到⊥,进而得到 ,,即有,得到△∽△,由相似三角形的性质即可得到结论.
    详解:(1)∵ ∥∥,∴四边形是平行四边形.
    ∵∥,∴.
    同理 .
    得:=
    ∵,∴.
    ∴四边形是菱形.
    (2)连接,与交于点.
    ∵四边形是菱形,∴⊥.
    得 .同理.
    ∴.
    又∵是公共角,∴△∽△.
    ∴.
    ∴.
    点睛:本题主要考查了菱形的判定和性质以及相似三角形的判定与性质.灵活运用菱形的判定与性质是解题的关键.
    23、(1)填表见解析;(2)160名;(3)平均数;26本.
    【解析】
    【分析】先确定统计表中的C、A等级的人数,再根据中位数和众数的定义得到样本数据的中位数和众数;
    (1)根据统计量,结合统计表进行估计即可;
    (2)用“B”等级人数所占的比例乘以全校的学生数即可得;
    (3)选择平均数,计算出全年阅读时间,然后再除以阅读一本课外书的时间即可得.
    【详解】整理数据 按如下分段整理样本数据并补全表格:
    分析数据 补全下列表格中的统计量:
    得出结论
    (1)观察统计量表格可以估计该校学生每周用于课外阅读时间的情况等级B ,
    故答案为:B;
    (2) 8÷20×400=160 ∴该校等级为“”的学生有160名;
    (3) 选统计量:平均数
    80×52÷160=26 ,
    ∴该校学生每人一年平均阅读26本课外书.
    【点睛】本题考查了中位数、众数、平均数、统计表、用样本估计总体等知识,熟练掌握各统计量的求解方法是关键.
    24、(1)详见解析;(2)72°;(3)
    【解析】
    (1)由B类型的人数及其百分比求得总人数,在用总人数减去其余各组人数得出C类型人数,即可补全条形图;
    (2)用360°乘以C类别人数所占比例即可得;
    (3)用列表法或画树状图法列出所有等可能结果,从中确定恰好抽到一男一女的结果数,根据概率公式求解可得.
    【详解】
    解:(1)∵ 抽 查的总人数为:(人)
    ∴ 类人数为:(人)
    补全条形统计图如下:
    (2)“碳酸饮料”所在的扇形的圆心角度数为:
    (3)设男生为、,女生为、、,
    画树状图得:
    ∴恰好抽到一男一女的情况共有12 种,分别是
    ∴ (恰好抽到一男一女).
    【点睛】
    本题考查的是条形统计图和扇形统计图的综合运用以及概率的求法,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    课外阅读时间(min)
    等级
    D
    C
    B
    A
    人数
    3
    8
    平均数
    中位数
    众数
    80
    课外阅读时间(min)
    等级
    D
    C
    B
    A
    人数
    3
    5
    8
    4
    平均数
    中位数
    众数
    80
    81
    81

    相关试卷

    05,2023年山东省枣庄市薛城区舜耕中学九年级中考模拟数学模拟预测题:

    这是一份05,2023年山东省枣庄市薛城区舜耕中学九年级中考模拟数学模拟预测题,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    山东省枣庄市薛城区舜耕中学2023-2024学年九上数学期末调研试题含答案:

    这是一份山东省枣庄市薛城区舜耕中学2023-2024学年九上数学期末调研试题含答案,共7页。试卷主要包含了若反比例函数y=等内容,欢迎下载使用。

    2023-2024学年山东省枣庄市薛城区舜耕中学数学八上期末教学质量检测试题含答案:

    这是一份2023-2024学年山东省枣庄市薛城区舜耕中学数学八上期末教学质量检测试题含答案,共7页。试卷主要包含了尺规作图要求,利用乘法公式计算正确的是,下列根式中是最简二次根式的是,如图,下列交通标志是轴对称图形的是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map