![黔南市重点中学2022年中考数学最后冲刺浓缩精华卷含解析01](http://m.enxinlong.com/img-preview/2/3/13561271/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![黔南市重点中学2022年中考数学最后冲刺浓缩精华卷含解析02](http://m.enxinlong.com/img-preview/2/3/13561271/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![黔南市重点中学2022年中考数学最后冲刺浓缩精华卷含解析03](http://m.enxinlong.com/img-preview/2/3/13561271/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
黔南市重点中学2022年中考数学最后冲刺浓缩精华卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,tanA的值为( )
A. B. C. D.3
2.关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则实数m的取值范围是( )
A.m<3 B.m>3 C.m≤3 D.m≥3
3.如果,那么代数式的值是( )
A.6 B.2 C.-2 D.-6
4.实数a,b,c在数轴上对应点的位置如图所示,则下列结论中正确的是( )
A.a+c>0 B.b+c>0 C.ac>bc D.a﹣c>b﹣c
5.如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.
下面有三个推断:
①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;
②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;
③若再次用计算机模拟此实验,则当投掷次数为1000时,“钉尖向上”的频率一定是0.1.
其中合理的是( )
A.① B.② C.①② D.①③
6.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是( )
A. B. C. D.
7.若等式(-5)□5=–1成立,则□内的运算符号为( )
A.+ B.– C.× D.÷
8.已知实数a、b满足,则
A. B. C. D.
9.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为4,则a的值是( )
A.4 B.3+ C.3 D.
10.如图,△ABC中,AB=2,AC=3,1<BC<5,分别以AB、BC、AC为边向外作正方形ABIH、BCDE和正方形ACFG,则图中阴影部分的最大面积为( )
A.6 B.9 C.11 D.无法计算
11.下列计算中,正确的是( )
A. B. C. D.
12.将一副三角板(∠A=30°)按如图所示方式摆放,使得AB∥EF,则∠1等于( )
A.75° B.90° C.105° D.115°
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根,则m的取值范围是_____.
14.当a,b互为相反数,则代数式a2+ab﹣2的值为_____.
15.为迎接文明城市的验收工作,某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是_____.
16.某次数学测试,某班一个学习小组的六位同学的成绩如下:84、75、75、92、86、99,则这六位同学成绩的中位数是_____.
17.如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,每块方砖大小、质地完全一致,那么它最终停留在黑色区域的概率是__________.
18.某书店把一本新书按标价的九折出售,仍可获利20%,若该书的进价为21元,则标
价为___________元.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)解分式方程:.
20.(6分)已知:正方形绕点顺时针旋转至正方形,连接.如图,求证:;如图,延长交于,延长交于,在不添加任何辅助线的情况下,请直接写出如图中的四个角,使写出的每一个角的大小都等于旋转角.
21.(6分)计算:(﹣2018)0﹣4sin45°+﹣2﹣1.
22.(8分)雾霾天气严重影响市民的生活质量。在今年寒假期间,某校九年级一班的综合实践小组学生对“雾霾天气的主要成因”随机调查了所在城市部分市民,并对调查结果进行了整理,绘制了下图所示的不完整的统计图表:
组别
雾霾天气的主要成因
百分比
A
工业污染
45%
B
汽车尾气排放
C
炉烟气排放
15%
D
其他(滥砍滥伐等)
请根据统计图表回答下列问题:本次被调查的市民共有多少人?并求和的值;请补全条形统计图,并计算扇形统计图中扇形区域所对应的圆心角的度数;若该市有100万人口,请估计市民认为“工业污染和汽车尾气排放是雾霾天气主要成因”的人数.
23.(8分)在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6000元购买的门票张数,现在只花费了4800元.求每张门票原定的票价;根据实际情况,活动组织单位决定对于个人购票也采取优惠措施,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.
24.(10分)如图,BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE∥AB,BE=AF.
(1)求证:四边形ADEF是平行四边形;
(2)若∠ABC=60°,BD=6,求DE的长.
25.(10分)随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.打折前甲、乙两种品牌粽子每盒分别为多少元?阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?
26.(12分)在以“关爱学生、安全第一”为主题的安全教育宣传月活动中,某学校为了了解本校学生的上学方式,在全校范围内随机抽查部分学生,了解到上学方式主要有:A:结伴步行、B:自行乘车、C:家人接送、D:其他方式,并将收集的数据整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列问题:
(1)本次抽查的学生人数是多少人?
(2)请补全条形统计图;请补全扇形统计图;
(3)“自行乘车”对应扇形的圆心角的度数是 度;
(4)如果该校学生有2000人,请你估计该校“家人接送”上学的学生约有多少人?
27.(12分)如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交BE于点F,点D,E的坐标分别为(3,0),(0,1).
(1)求抛物线的解析式;
(2)猜想△EDB的形状并加以证明;
(3)点M在对称轴右侧的抛物线上,点N在x轴上,请问是否存在以点A,F,M,N为顶点的四边形是平行四边形?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
根据勾股定理和三角函数即可解答.
【详解】
解:已知在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,
设a=x,则c=3x,b==2x.
即tanA==.
故选B.
【点睛】
本题考查勾股定理和三角函数,熟悉掌握是解题关键.
2、A
【解析】
分析:根据关于x的一元二次方程x2-2x+m=0有两个不相等的实数根可得△=(-2)2-4m>0,求出m的取值范围即可.
详解:∵关于x的一元二次方程x2-2x+m=0有两个不相等的实数根,
∴△=(-2)2-4m>0,
∴m<3,
故选A.
点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.
3、A
【解析】
【分析】将所求代数式先利用单项式乘多项式法则、平方差公式进行展开,然后合并同类项,最后利用整体代入思想进行求值即可.
【详解】∵3a2+5a-1=0,
∴3a2+5a=1,
∴5a(3a+2)-(3a+2)(3a-2)=15a2+10a-9a2+4=6a2+10a+4=2(3a2+5a)+4=6,
故选A.
【点睛】本题考查了代数式求值,涉及到单项式乘多项式、平方差公式、合并同类项等,利用整体代入思想进行解题是关键.
4、D
【解析】
分析:根据图示,可得:c 详解: ∵c<0<a,|c|>|a|,
∴a+c<0,
∴选项A不符合题意;
∵c<b<0,
∴b+c<0,
∴选项B不符合题意;
∵c<b<0<a,c<0,
∴ac<0,bc>0,
∴ac<bc,
∴选项C不符合题意;
∵a>b,
∴a﹣c>b﹣c,
∴选项D符合题意.
故选D.
点睛:此题考查了数轴,考查了有理数的大小比较关系,考查了不等关系与不等式.熟记有理数大小比较法则,即正数大于0,负数小于0,正数大于一切负数.
5、B
【解析】
①当频数增大时,频率逐渐稳定的值即为概率,500次的实验次数偏低,而频率稳定在了0.618,错误;②由图可知频数稳定在了0.618,所以估计频率为0.618,正确;③.这个实验是一个随机试验,当投掷次数为1000时,钉尖向上”的概率不一定是0.1.错误,
故选B.
【点睛】本题考查了利用频率估计概率,能正确理解相关概念是解题的关键.
6、D
【解析】
分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.
详解:∵共6个数,大于3的有3个,
∴P(大于3)=.
故选D.
点睛:本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
7、D
【解析】
根据有理数的除法可以解答本题.
【详解】
解:∵(﹣5)÷5=﹣1,
∴等式(﹣5)□5=﹣1成立,则□内的运算符号为÷,
故选D.
【点睛】
考查有理数的混合运算,解答本题的关键是明确有理数的混合运算的计算方法.
8、C
【解析】
根据不等式的性质进行判断.
【详解】
解:A、,但不一定成立,例如:,故本选项错误;
B、,但不一定成立,例如:,,故本选项错误;
C、时,成立,故本选项正确;
D、时,成立,则不一定成立,故本选项错误;
故选C.
【点睛】
考查了不等式的性质要认真弄清不等式的基本性质与等式的基本性质的异同,特别是在不等式两边同乘以或除以同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.
9、B
【解析】
试题解析:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图,
∵⊙P的圆心坐标是(3,a),
∴OC=3,PC=a,
把x=3代入y=x得y=3,
∴D点坐标为(3,3),
∴CD=3,
∴△OCD为等腰直角三角形,
∴△PED也为等腰直角三角形,
∵PE⊥AB,
∴AE=BE=AB=×4=2,
在Rt△PBE中,PB=3,
∴PE=,
∴PD=PE=,
∴a=3+.
故选B.
考点:1.垂径定理;2.一次函数图象上点的坐标特征;3.勾股定理.
10、B
【解析】
有旋转的性质得到CB=BE=BH′,推出C、B、H'在一直线上,且AB为△ACH'的中线,得到S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,当∠BAC=90°时, S△ABC的面积最大,S△BEI=S△CDF=S△ABC最大,推出S△GBI=S△ABC,于是得到阴影部分面积之和为S△ABC的3倍,于是得到结论.
【详解】
把△IBE绕B顺时针旋转90°,使BI与AB重合,E旋转到H'的位置,
∵四边形BCDE为正方形,∠CBE=90°,CB=BE=BH′,
∴C、B、H'在一直线上,且AB为△ACH'的中线,
∴S△BEI=S△ABH′=S△ABC,
同理:S△CDF=S△ABC,
当∠BAC=90°时,
S△ABC的面积最大,
S△BEI=S△CDF=S△ABC最大,
∵∠ABC=∠CBG=∠ABI=90°,
∴∠GBE=90°,
∴S△GBI=S△ABC,
所以阴影部分面积之和为S△ABC的3倍,
又∵AB=2,AC=3,
∴图中阴影部分的最大面积为3× ×2×3=9,
故选B.
【点睛】
本题考查了勾股定理,利用了旋转的性质:旋转前后图形全等得出图中阴影部分的最大面积是S△ABC的3 倍是解题的关键.
11、D
【解析】
根据积的乘方、合并同类项、同底数幂的除法以及幂的乘方进行计算即可.
【详解】
A、(2a)3=8a3,故本选项错误;
B、a3+a2不能合并,故本选项错误;
C、a8÷a4=a4,故本选项错误;
D、(a2)3=a6,故本选项正确;
故选D.
【点睛】
本题考查了积的乘方、合并同类项、同底数幂的除法以及幂的乘方,掌握运算法则是解题的关键.
12、C
【解析】
分析:依据AB∥EF,即可得∠BDE=∠E=45°,再根据∠A=30°,可得∠B=60°,利用三角形外角性质,即可得到∠1=∠BDE+∠B=105°.
详解:∵AB∥EF,
∴∠BDE=∠E=45°,
又∵∠A=30°,
∴∠B=60°,
∴∠1=∠BDE+∠B=45°+60°=105°,
故选C.
点睛:本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、m≤1
【解析】
根据一元二次方程有实数根,得出△≥0,建立关于m的不等式,求出m的取值范围即可.
【详解】
解:由题意知,△=4﹣4(m﹣1)≥0,
∴m≤1,
故答案为:m≤1.
【点睛】
此题考查了根的判别式,掌握一元二次方程根的情况与判别式△的关系:△>0,方程有两个不相等的实数根;△=0,方程有两个相等的实数根;△<0,方程没有实数根是本题的关键.
14、﹣1.
【解析】
分析:
由已知易得:a+b=0,再把代数式a1+ab-1化为为a(a+b)-1即可求得其值了.
详解:
∵a与b互为相反数,
∴a+b=0,
∴a1+ab-1=a(a+b)-1=0-1=-1.
故答案为:-1.
点睛:知道“互为相反数的两数的和为0”及“能够把a1+ab-1化为为a(a+b)-1”是正确解答本题的关键.
15、
【解析】
将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.
【详解】
解:将三个小区分别记为A、B、C,
列表如下:
A
B
C
A
(A,A)
(B,A)
(C,A)
B
(A,B)
(B,B)
(C,B)
C
(A,C)
(B,C)
(C,C)
由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,
所以两个组恰好抽到同一个小区的概率为=.
故答案为:.
【点睛】
此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.
16、85
【解析】
根据中位数求法,将学生成绩从小到大排列,取中间两数的平均数即可解题.
【详解】
解:将六位同学的成绩按从小到大进行排列为:75,75,84,86,92,99,
中位数为中间两数84和86的平均数,
∴这六位同学成绩的中位数是85.
【点睛】
本题考查了中位数的求法,属于简单题,熟悉中位数的概念是解题关键.
17、.
【解析】
先求出黑色方砖在整个地面中所占的比值,再根据其比值即可得出结论.
【详解】
解:∵由图可知,黑色方砖4块,共有16块方砖,
∴黑色方砖在整个区域中所占的比值
∴它停在黑色区域的概率是;
故答案为.
【点睛】
本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
18、28
【解析】
设标价为x元,那么0.9x-21=21×20%,x=28.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、.
【解析】
试题分析:方程最简公分母为,方程两边同乘将分式方程转化为整式方程求解,要注意检验.
试题解析:方程两边同乘,得:,整理解得:,经检验:是原方程的解.
考点:解分式方程.
20、(1)证明见解析;(2).
【解析】
(1)连接AF、AC,易证∠EAC=∠DAF,再证明ΔEAC≅ΔDAF,根据全等三角形的性质即可得CE=DF;(2)由旋转的性质可得∠DAG、∠BAE都是旋转角,在四边形AEMB中,∠BAE+∠EMB=180°,∠FMC+∠EMB=180°,可得∠FMC=∠BAE,同理可得∠DAG=∠CNF,由此即可解答.
【详解】
(1)证明:连接,
∵正方形旋转至正方形
∴,
∴
∴
在和中,
,
∴
∴
(2).∠DAG、∠BAE、∠FMC、∠CNF;
由旋转的性质可得∠DAG、∠BAE都是旋转角,在四边形AEMB中,∠BAE+∠EMB=180°,∠FMC+∠EMB=180°,可得∠FMC=∠BAE,同理可得∠DAG=∠CNF,
【点睛】
本题考查了正方形的性质、旋转的性质及全等三角形的判定与性质,证明ΔEAC≅ΔDAF是解决问题的关键.
21、.
【解析】
根据零指数幂和特殊角的三角函数值进行计算
【详解】
解:原式=1﹣4×+2﹣
=1﹣2+2﹣
=
【点睛】
本题考查了实数的运算:实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.
22、(1)200人,;(2)见解析,;(3)75万人.
【解析】
(1)用A类的人数除以所占的百分比求出被调查的市民数,再用B类的人数除以总人数得出B类所占的百分比m,继而求出n的值即可;
(2)求出C、D两组人数,从而可补全条形统计图,用360度乘以n即可得扇形区域所对应的圆心角的度数;
(3)用该市的总人数乘以持有A、B两类所占的百分比的和即可.
【详解】
(1)本次被调查的市民共有:(人),
∴,;
(2)组的人数是(人)、组的人数是(人),
∴;
补全的条形统计图如下图所示:
扇形区域所对应的圆心角的度数为:
;
(3)(万),
∴若该市有100万人口,市民认为“工业污染和汽车尾气排放是雾霾天气主要成因”的人数约为75万人.
【点睛】
本题考查了条形统计图、扇形统计图、统计表,读懂图形,找出必要的信息是解题的关键.
23、(1)1(2)10%.
【解析】
试题分析:(1)设每张门票的原定票价为x元,则现在每张门票的票价为(x-80)元,根据“按原定票价需花费6000元购买的门票张数,现在只花费了4800元”建立方程,解方程即可;
(2)设平均每次降价的百分率为y,根据“原定票价经过连续二次降价后降为324元”建立方程,解方程即可.
试题解析:(1)设每张门票的原定票价为x元,则现在每张门票的票价为(x-80)元,根据题意得
,
解得x=1.
经检验,x=1是原方程的根.
答:每张门票的原定票价为1元;
(2)设平均每次降价的百分率为y,根据题意得
1(1-y)2=324,
解得:y1=0.1,y2=1.9(不合题意,舍去).
答:平均每次降价10%.
考点:1.一元二次方程的应用;2.分式方程的应用.
24、(1)证明见解析;(2).
【解析】
(1)由BD是△ABC的角平分线,DE∥AB,可证得△BDE是等腰三角形,且BE=DE;又由BE=AF,可得DE=AF,即可证得四边形ADEF是平行四边形;
(2)过点E作EH⊥BD于点H,由∠ABC=60°,BD是∠ABC的平分线,可求得BH的长,从而求得BE、DE的长,即可求得答案.
【详解】
(1)证明:∵BD是△ABC的角平分线,
∴∠ABD=∠DBE,
∵DE∥AB,
∴∠ABD=∠BDE,
∴∠DBE=∠BDE,
∴BE=DE;
∵BE=AF,
∴AF=DE;
∴四边形ADEF是平行四边形;
(2)解:过点E作EH⊥BD于点H.
∵∠ABC=60°,BD是∠ABC的平分线,
∴∠ABD=∠EBD=30°,
∴DH=BD=×6=3,
∵BE=DE,
∴BH=DH=3,
∴BE==,
∴DE=BE=.
【点睛】
此题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及三角函数等知识.注意掌握辅助线的作法.
25、(1)打折前甲品牌粽子每盒70元,乙品牌粽子每盒80元.(2)打折后购买这批粽子比不打折节省了3120元.
【解析】
分析:(1)设打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,根据“打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;
(2)根据节省钱数=原价购买所需钱数-打折后购买所需钱数,即可求出节省的钱数.
详解:(1)设打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,
根据题意得:
,
解得:.
答:打折前甲品牌粽子每盒40元,乙品牌粽子每盒120元.
(2)80×40+100×120-80×0.8×40-100×0.75×120=3640(元).
答:打折后购买这批粽子比不打折节省了3640元.
点睛:本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量关系,列式计算.
26、(1)本次抽查的学生人数是120人;(2)见解析;(3)126;(4)该校“家人接送”上学的学生约有500人.
【解析】
(1)本次抽查的学生人数:18÷15%=120(人);
(2)A:结伴步行人数120﹣42﹣30﹣18=30(人),据此补全条形统计图;
(3)“自行乘车”对应扇形的圆心角的度数360°×=126°;
(4)估计该校“家人接送”上学的学生约有:2000×25%=500(人).
【详解】
解:(1)本次抽查的学生人数:18÷15%=120(人),
答:本次抽查的学生人数是120人;
(2)A:结伴步行人数120﹣42﹣30﹣18=30(人),
补全条形统计图如下:
“结伴步行”所占的百分比为×100%=25%;“自行乘车”所占的百分比为×100%=35%,
“自行乘车”在扇形统计图中占的度数为360°×35%=126°,补全扇形统计图,如图所示;
(3)“自行乘车”对应扇形的圆心角的度数360°×=126°,
故答案为126;
(4)估计该校“家人接送”上学的学生约有:2000×25%=500(人),
答:该校“家人接送”上学的学生约有500人.
【点睛】
本题主要考查条形统计图及扇形统计图及相关计算,用样本估计总体.解题的关键是读懂统计图,从条形统计图中得到必要的信息是解决问题的关键.
27、(1)y=﹣x2+3x;(2)△EDB为等腰直角三角形;证明见解析;(3)(,2)或(,﹣2).
【解析】
(1)由条件可求得抛物线的顶点坐标及A点坐标,利用待定系数法可求得抛物线解析式;
(2)由B、D、E的坐标可分别求得DE、BD和BE的长,再利用勾股定理的逆定理可进行判断;
(3)由B、E的坐标可先求得直线BE的解析式,则可求得F点的坐标,当AF为边时,则有FM∥AN且FM=AN,则可求得M点的纵坐标,代入抛物线解析式可求得M点坐标;当AF为对角线时,由A、F的坐标可求得平行四边形的对称中心,可设出M点坐标,则可表示出N点坐标,再由N点在x轴上可得到关于M点坐标的方程,可求得M点坐标.
【详解】
解:(1)在矩形OABC中,OA=4,OC=3,
∴A(4,0),C(0,3),
∵抛物线经过O、A两点,
∴抛物线顶点坐标为(2,3),
∴可设抛物线解析式为y=a(x﹣2)2+3,
把A点坐标代入可得0=a(4﹣2)2+3,解得a=﹣,
∴抛物线解析式为y=﹣(x﹣2)2+3,即y=﹣x2+3x;
(2)△EDB为等腰直角三角形.
证明:
由(1)可知B(4,3),且D(3,0),E(0,1),
∴DE2=32+12=10,BD2=(4﹣3)2+32=10,BE2=42+(3﹣1)2=20,
∴DE2+BD2=BE2,且DE=BD,
∴△EDB为等腰直角三角形;
(3)存在.理由如下:
设直线BE解析式为y=kx+b,
把B、E坐标代入可得,解得,
∴直线BE解析式为y=x+1,
当x=2时,y=2,
∴F(2,2),
①当AF为平行四边形的一边时,则M到x轴的距离与F到x轴的距离相等,即M到x轴的距离为2,
∴点M的纵坐标为2或﹣2,
在y=﹣x2+3x中,令y=2可得2=﹣x2+3x,解得x=,
∵点M在抛物线对称轴右侧,
∴x>2,
∴x=,
∴M点坐标为(,2);
在y=﹣x2+3x中,令y=﹣2可得﹣2=﹣x2+3x,解得x=,
∵点M在抛物线对称轴右侧,
∴x>2,
∴x=,
∴M点坐标为(,﹣2);
②当AF为平行四边形的对角线时,
∵A(4,0),F(2,2),
∴线段AF的中点为(3,1),即平行四边形的对称中心为(3,1),
设M(t,﹣t2+3t),N(x,0),
则﹣t2+3t=2,解得t=,
∵点M在抛物线对称轴右侧,
∴x>2,
∵t>2,
∴t=,
∴M点坐标为(,2);
综上可知存在满足条件的点M,其坐标为(,2)或(,﹣2).
【点睛】
本题为二次函数的综合应用,涉及矩形的性质、待定系数法、勾股定理及其逆定理、平行四边形的性质、方程思想及分类讨论思想等知识.在(1)中求得抛物线的顶点坐标是解题的关键,注意抛物线顶点式的应用,在(2)中求得△EDB各边的长度是解题的关键,在(3)中确定出M点的纵坐标是解题的关键,注意分类讨论.本题考查知识点较多,综合性较强,难度较大.
2022届铜陵市重点中学中考数学最后冲刺浓缩精华卷含解析: 这是一份2022届铜陵市重点中学中考数学最后冲刺浓缩精华卷含解析,共25页。试卷主要包含了考生必须保证答题卡的整洁,中国古代在利用“计里画方”,一元二次方程=0的两个根是,定义等内容,欢迎下载使用。
2022届攀枝花市重点中学中考数学最后冲刺浓缩精华卷含解析: 这是一份2022届攀枝花市重点中学中考数学最后冲刺浓缩精华卷含解析,共20页。试卷主要包含了答题时请按要求用笔,若a+|a|=0,则等于,如图所示的几何体的左视图是等内容,欢迎下载使用。
2022届嘉峪关市重点中学中考数学最后冲刺浓缩精华卷含解析: 这是一份2022届嘉峪关市重点中学中考数学最后冲刺浓缩精华卷含解析,共20页。试卷主要包含了答题时请按要求用笔,式子有意义的x的取值范围是,下列实数为无理数的是等内容,欢迎下载使用。