2022届鄂州市重点中学中考数学最后冲刺浓缩精华卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.多项式4a﹣a3分解因式的结果是( )
A.a(4﹣a2) B.a(2﹣a)(2+a) C.a(a﹣2)(a+2) D.a(2﹣a)2
2.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度与时间之间的关系的图象是( )
A. B. C. D.
3.欧几里得的《原本》记载,形如的方程的图解法是:画,使,,,再在斜边上截取.则该方程的一个正根是( )
A.的长 B.的长 C.的长 D.的长
4.如图,在矩形ABCD中,P、R分别是BC和DC上的点,E、F分别是AP和RP的中点,当点P在BC上从点B向点C移动,而点R不动时,下列结论正确的是( )
A.线段EF的长逐渐增长 B.线段EF的长逐渐减小
C.线段EF的长始终不变 D.线段EF的长与点P的位置有关
5.如图是由5个相同的小正方体组成的立体图形,这个立体图形的俯视图是( )
A. B. C. D.
6.下列方程中,两根之和为2的是( )
A.x2+2x﹣3=0 B.x2﹣2x﹣3=0 C.x2﹣2x+3=0 D.4x2﹣2x﹣3=0
7.若一元二次方程x2﹣2kx+k2=0的一根为x=﹣1,则k的值为( )
A.﹣1 B.0 C.1或﹣1 D.2或0
8.如图,为了测量河对岸l1上两棵古树A、B之间的距离,某数学兴趣小组在河这边沿着与AB平行的直线l2上取C、D两点,测得∠ACB=15°,∠ACD=45°,若l1、l2之间的距离为50m,则A、B之间的距离为( )
A.50m B.25m C.(50﹣)m D.(50﹣25)m
9.下列各式中正确的是( )
A. =±3 B. =﹣3 C. =3 D.
10.在实数π,0,,﹣4中,最大的是( )
A.π B.0 C. D.﹣4
11.下列运算正确的是( )
A.5ab﹣ab=4 B.a6÷a2=a4
C. D.(a2b)3=a5b3
12.如图所示的四张扑克牌背面完全相同,洗匀后背面朝上,则从中任意翻开一张,牌面数字是 3 的倍数的概率为( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.已知,则=_____.
14.如图所示,在△ABC中,∠C=90°,∠CAB=50°.按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB,AC于点E,F;②分别以点E,F为圆心,大于EF的长为半径画弧,两弧相交于点G;③作射线AG交BC边于点D.则∠ADC的度数为 .
15.甲乙两种水稻试验品中连续5年的平均单位面积产量如下(单位:吨/公顷)
品种
第1年
第2年
第3年
第4年
第5年
品种
甲
9.8
9.9
10.1
10
10.2
甲
乙
9.4
10.3
10.8
9.7
9.8
乙
经计算,,试根据这组数据估计_____中水稻品种的产量比较稳定.
16.如图,在正方形ABCD中,AD=5,点E,F是正方形ABCD内的两点,且AE=FC=3,BE=DF=4,则EF的长为__________.
17.二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0中,正确的有______.(只填序号)
18.边长为3的正方形网格中,⊙O的圆心在格点上,半径为3,则tan∠AED=_______.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,某大楼的顶部竖有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的倾斜角∠BAH=30°,AB=20米,AB=30米.
(1)求点B距水平面AE的高度BH;
(2)求广告牌CD的高度.
20.(6分)据城市速递报道,我市一辆高为2.5米的客车,卡在快速路引桥上高为2.55米的限高杆的上端,已知引桥的坡角∠ABC为14°,请结合示意图,用你学过的知识通过数据说明客车不能通过的原因.(参考数据:sin14°=0.24,cos14°=0.97,tan14°=0.25)
21.(6分)在正方形 ABCD 中,M 是 BC 边上一点,且点 M 不与 B、C 重合,点 P 在射线 AM 上,将线段 AP 绕点 A 顺时针旋转 90°得到线段 AQ,连接BP,DQ.
(1)依题意补全图 1;
(2)①连接 DP,若点 P,Q,D 恰好在同一条直线上,求证:DP2+DQ2=2AB2;
②若点 P,Q,C 恰好在同一条直线上,则 BP 与 AB 的数量关系为: .
22.(8分)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE,求证:CE=CF;如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD;运用(1)(2)解答中所积累的经验和知识,完成下题:
如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10, 求直角梯形ABCD的面积.
23.(8分)如图,在四边形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,AB=,点E,F同时从B点出发,沿射线BC向右匀速移动,已知点F的移动速度是点E移动速度的2倍,以EF为一边在CB的上方作等边△EFG,设E点移动距离为x(0<x<6).
(1)∠DCB= 度,当点G在四边形ABCD的边上时,x= ;
(2)在点E,F的移动过程中,点G始终在BD或BD的延长线上运动,求点G在线段BD的中点时x的值;
(3)当2<x<6时,求△EFG与四边形ABCD重叠部分面积y与x之间的函数关系式,当x取何值时,y有最大值?并求出y的最大值.
24.(10分)我市某企业接到一批产品的生产任务,按要求必须在14天内完成.已知每件产品的出厂价为60元.工人甲第x天生产的产品数量为y件,y与x满足如下关系:
工人甲第几天生产的产品数量为70件?设第x天生产的产品成本为P元/件,P与的函数图象如图.工人甲第x天创造的利润为W元,求W与x的函数关系式,并求出第几天时利润最大,最大利润是多少?
25.(10分)已知,在平面直角坐标系xOy中,抛物线L:y=x2-4x+3与x轴交于A,B两点(点A在点B的左侧),顶点为C.
(1)求点C和点A的坐标.
(2)定义“L双抛图形”:直线x=t将抛物线L分成两部分,首先去掉其不含顶点的部分,然后作出抛物线剩余部分关于直线x=t的对称图形,得到的整个图形称为抛物线L关于直线x=t的“L双抛图形”(特别地,当直线x=t恰好是抛物线的对称轴时,得到的“L双抛图形”不变),
①当t=0时,抛物线L关于直找x=0的“L双抛图形”如图所示,直线y=3与“L双抛图形”有______个交点;
②若抛物线L关于直线x=t的“L双抛图形”与直线y=3恰好有两个交点,结合图象,直接写出t的取值范围:______;
③当直线x=t经过点A时,“L双抛图形”如图所示,现将线段AC所在直线沿水平(x轴)方向左右平移,交“L双抛图形”于点P,交x轴于点Q,满足PQ=AC时,求点P的坐标.
26.(12分)某校为了开阔学生的视野,积极组织学生参加课外读书活动.“放飞梦想”读书小组协助老师随机抽取本校的部分学生,调查他们最喜爱的图书类别(图书分为文学类、艺体类、科普类、其他等四类),并将调查结果绘制成如下两幅不完整的统计图,请你结合图中的信息解答下列问题:求被调查的学生人数;补全条形统计图;已知该校有1200名学生,估计全校最喜爱文学类图书的学生有多少人?
27.(12分)如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
首先提取公因式a,再利用平方差公式分解因式得出答案.
【详解】
4a﹣a3=a(4﹣a2)=a(2﹣a)(2+a).
故选:B.
【点睛】
此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.
2、C
【解析】
首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系变为先快后慢.
【详解】
根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,先快后慢。
故选:C.
【点睛】
此题考查函数的图象,解题关键在于观察图形
3、B
【解析】
【分析】可以利用求根公式求出方程的根,根据勾股定理求出AB的长,进而求得AD的长,即可发现结论.
【解答】用求根公式求得:
∵
∴
∴
AD的长就是方程的正根.
故选B.
【点评】考查解一元二次方程已经勾股定理等,熟练掌握公式法解一元二次方程是解题的关键.
4、C
【解析】
试题分析:连接AR,根据勾股定理得出AR=的长不变,根据三角形的中位线定理得出EF=AR,即可得出线段EF的长始终不变,
故选C.
考点:1、矩形性质,2、勾股定理,3、三角形的中位线
5、C
【解析】
从上面看共有2行,上面一行有3个正方形,第二行中间有一个正方形,
故选C.
6、B
【解析】
由根与系数的关系逐项判断各项方程的两根之和即可.
【详解】
在方程x2+2x-3=0中,两根之和等于-2,故A不符合题意;
在方程x2-2x-3=0中,两根之和等于2,故B符合题意;
在方程x2-2x+3=0中,△=(-2)2-4×3=-8<0,则该方程无实数根,故C不符合题意;
在方程4x2-2x-3=0中,两根之和等于-,故D不符合题意,
故选B.
【点睛】
本题主要考查根与系数的关系,掌握一元二次方程的两根之和等于-、两根之积等于是解题的关键.
7、A
【解析】
把x=﹣1代入方程计算即可求出k的值.
【详解】
解:把x=﹣1代入方程得:1+2k+k2=0,
解得:k=﹣1,
故选:A.
【点睛】
此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.
8、C
【解析】
如图,过点A作AM⊥DC于点M,过点B作BN⊥DC于点N.则AM=BN.通过解直角△ACM和△BCN分别求得CM、CN的长度,则易得AB =MN=CM﹣CN,即可得到结论.
【详解】
如图,过点A作AM⊥DC于点M,过点B作BN⊥DC于点N.
则AB=MN,AM=BN.
在直角△ACM中,∵∠ACM=45°,AM=50m,∴CM=AM=50m.
在直角△BCN中,∵∠BCN=∠ACB+∠ACD=60°,BN=50m,∴CN=(m),∴MN=CM﹣CN=50﹣(m).
则AB=MN=(50﹣)m.
故选C.
【点睛】
本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.
9、D
【解析】
原式利用平方根、立方根定义计算即可求出值.
【详解】
解:A、原式=3,不符合题意;
B、原式=|-3|=3,不符合题意;
C、原式不能化简,不符合题意;
D、原式=2-=,符合题意,
故选:D.
【点睛】
此题考查了立方根,以及算术平方根,熟练掌握各自的性质是解本题的关键.
10、C
【解析】
根据实数的大小比较即可得到答案.
【详解】
解:∵16<17<25,∴4<<5,∴>π>0>-4,故最大的是,故答案选C.
【点睛】
本题主要考查了实数的大小比较,解本题的要点在于统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.
11、B
【解析】
由整数指数幂和分式的运算的法则计算可得答案.
【详解】
A项, 根据单项式的减法法则可得:5ab-ab=4ab,故A项错误;
B项, 根据“同底数幂相除,底数不变,指数相减”可得: a6÷a2=a4,故B项正确;
C项,根据分式的加法法则可得:,故C项错误;
D项, 根据 “积的乘方等于乘方的积” 可得:,故D项错误;
故本题正确答案为B.
【点睛】
幂的运算法则:
(1) 同底数幂的乘法: (m、n都是正整数)
(2)幂的乘方:(m、n都是正整数)
(3)积的乘方: (n是正整数)
(4)同底数幂的除法:(a≠0,m、n都是正整数,且m>n)
(5)零次幂:(a≠0)
(6) 负整数次幂: (a≠0, p是正整数).
12、C
【解析】
根据题意确定所有情况的数目,再确定符合条件的数目,根据概率的计算公式即可.
【详解】
解:由题意可知,共有4种情况,其中是 3 的倍数的有6和9,
∴是 3 的倍数的概率,
故答案为:C.
【点睛】
本题考查了概率的计算,解题的关键是熟知概率的计算公式.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
由可知值,再将化为的形式进行求解即可.
【详解】
解:∵,
∴,
∴原式=.
【点睛】
本题考查了分式的化简求值.
14、65°
【解析】
根据已知条件中的作图步骤知,AG是∠CAB的平分线,根据角平分线的性质解答即可.
【详解】
根据已知条件中的作图步骤知,AG是∠CAB的平分线,∵∠CAB=50°,
∴∠CAD=25°;
在△ADC中,∠C=90°,∠CAD=25°,
∴∠ADC=65°(直角三角形中的两个锐角互余);
故答案是:65°.
15、甲
【解析】
根据方差公式分别求出两种水稻的产量的方差,再进行比较即可.
【详解】
甲种水稻产量的方差是:
,
乙种水稻产量的方差是:
,
∴0.02<0.124.∴产量比较稳定的小麦品种是甲.
16、
【解析】
分析:延长AE交DF于G,再根据全等三角形的判定得出△AGD与△ABE全等,得出AG=BE=4,由AE=3,得出EG=1,同理得出GF=1,再根据勾股定理得出EF的长.
详解:延长AE交DF于G,如图, ∵AB=5,AE=3,BE=4,
∴△ABE是直角三角形,
同理可得△DFC是直角三角形,可得△AGD是直角三角形,
∴∠ABE+∠BAE=∠DAE+∠BAE,∴∠GAD=∠EBA,
同理可得:∠ADG=∠BAE.
在△AGD和△BAE中,∵,
∴△AGD≌△BAE(ASA),
∴AG=BE=4,DG=AE=3,∴EG=4﹣3=1,
同理可得:GF=1,∴EF=.
故答案为.
点睛:本题考查了正方形的性质,关键是根据全等三角形的判定和性质得出EG=FG=1,再利用勾股定理计算.
17、①②③⑤
【解析】
根据图象可判断①②③④⑤,由x=1时,y<0,可判断⑥
【详解】
由图象可得,a>0,c<0,b<0,△=b2﹣4ac>0,对称轴为x=
∴abc>0,4ac<b2,当时,y随x的增大而减小.故①②⑤正确,
∵
∴2a+b>0,
故③正确,
由图象可得顶点纵坐标小于﹣2,则④错误,
当x=1时,y=a+b+c<0,故⑥错误
故答案为:①②③⑤
【点睛】
本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物
线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.
18、
【解析】
根据同弧或等弧所对的圆周角相等知∠AED=∠ABD,所以tan∠AED的值就是tanB的值.
【详解】
解: ∵∠AED=∠ABD (同弧所对的圆周角相等),
∴tan∠AED=tanB=.
故答案为:.
【点睛】
本题主要考查了圆周角定理、锐角三角函数的定义.解答网格中的角的三角函数值时,一般是将所求的角与直角三角形中的等角联系起来,通过解直角三角形中的三角函数值来解答问题.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、 (1) BH为10米;(2) 宣传牌CD高约(40﹣20)米
【解析】
(1)过B作DE的垂线,设垂足为G.分别在Rt△ABH中,通过解直角三角形求出BH、AH;
(2)在△ADE解直角三角形求出DE的长,进而可求出EH即BG的长,在Rt△CBG中,∠CBG=45°,则CG=BG,由此可求出CG的长然后根据CD=CG+GE-DE即可求出宣传牌的高度.
【详解】
(1)过B作BH⊥AE于H,
Rt△ABH中,∠BAH=30°,
∴BH=AB=×20=10(米),
即点B距水平面AE的高度BH为10米;
(2)过B作BG⊥DE于G,
∵BH⊥HE,GE⊥HE,BG⊥DE,
∴四边形BHEG是矩形.
∵由(1)得:BH=10,AH=10,
∴BG=AH+AE=(10+30)米,
Rt△BGC中,∠CBG=45°,
∴CG=BG=(10+30)米,
∴CE=CG+GE=CG+BH=10+30+10=10+40(米),
在Rt△AED中,
=tan∠DAE=tan60°=,
DE=AE=30
∴CD=CE﹣DE=10+40﹣30=40﹣20.
答:宣传牌CD高约(40﹣20)米.
【点睛】
本题考查解直角三角形的应用-仰角俯角问题和解直角三角形的应用-坡度坡角问题,解题的关键是掌握解直角三角形的应用-仰角俯角问题和解直角三角形的应用-坡度坡角问题的基本方法.
20、客车不能通过限高杆,理由见解析
【解析】
根据DE⊥BC,DF⊥AB,得到∠EDF=∠ABC=14°.在Rt△EDF中,根据cos∠EDF=,求出DF的值,即可判断.
【详解】
∵DE⊥BC,DF⊥AB,
∴∠EDF=∠ABC=14°.
在Rt△EDF中,∠DFE=90°,
∵cos∠EDF=,
∴DF=DE•cos∠EDF=2.55×cos14°≈2.55×0.97≈2.1.
∵限高杆顶端到桥面的距离DF为2.1米,小于客车高2.5米,
∴客车不能通过限高杆.
【点睛】
考查解直角三角形,选择合适的锐角三角函数是解题的关键.
21、(1)详见解析;(1)①详见解析;②BP=AB.
【解析】
(1)根据要求画出图形即可;
(1)①连接BD,如图1,只要证明△ADQ≌△ABP,∠DPB=90°即可解决问题;
②结论:BP=AB,如图3中,连接AC,延长CD到N,使得DN=CD,连接AN,QN.由△ADQ≌△ABP,△ANQ≌△ACP,推出DQ=PB,∠AQN=∠APC=45°,由∠AQP=45°,推出∠NQC=90°,由CD=DN,可得DQ=CD=DN=AB;
【详解】
(1)解:补全图形如图 1:
(1)①证明:连接 BD,如图 1,
∵线段 AP 绕点 A 顺时针旋转 90°得到线段 AQ,
∴AQ=AP,∠QAP=90°,
∵四边形 ABCD 是正方形,
∴AD=AB,∠DAB=90°,
∴∠1=∠1.
∴△ADQ≌△ABP,
∴DQ=BP,∠Q=∠3,
∵在 Rt△QAP 中,∠Q+∠QPA=90°,
∴∠BPD=∠3+∠QPA=90°,
∵在 Rt△BPD 中,DP1+BP1=BD1, 又∵DQ=BP,BD1=1AB1,
∴DP1+DQ1=1AB1.
②解:结论:BP=AB.
理由:如图 3 中,连接 AC,延长 CD 到 N,使得 DN=CD,连接 AN,QN.
∵△ADQ≌△ABP,△ANQ≌△ACP,
∴DQ=PB,∠AQN=∠APC=45°,
∵∠AQP=45°,
∴∠NQC=90°,
∵CD=DN,
∴DQ=CD=DN=AB,
∴PB=AB.
【点睛】
本题考查正方形的性质,旋转变换、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴
22、(1)、(2)证明见解析(3)28
【解析】
试题分析:(1)根据正方形的性质,可直接证明△CBE≌△CDF,从而得出CE=CF;
(2)延长AD至F,使DF=BE,连接CF,根据(1)知∠BCE=∠DCF,即可证明∠ECF=∠BCD=90°,根据∠GCE=45°,得∠GCF=∠GCE=45°,利用全等三角形的判定方法得出△ECG≌△FCG,即GE=GF,即可得出答案GE=DF+GD=BE+GD;
(3)过C作CF⊥AD的延长线于点F.则四边形ABCF是正方形,设DF=x,则AD=12-x,根据(2)可得:DE=BE+DF=4+x,在直角△ADE中利用勾股定理即可求解;
试题解析:(1)如图1,在正方形ABCD中,
∵BC=CD,∠B=∠CDF,BE=DF,
∴△CBE≌△CDF,
∴CE=CF;
(2)如图2,延长AD至F,使DF=BE,连接CF,
由(1)知△CBE≌△CDF,
∴∠BCE=∠DCF.
∴∠BCE+∠ECD=∠DCF+∠ECD
即∠ECF=∠BCD=90°,
又∵∠GCE=45°,∴∠GCF=∠GCE=45°,
∵CE=CF,∠GCE=∠GCF,GC=GC,
∴△ECG≌△FCG,
∴GE=GF,
∴GE=DF+GD=BE+GD;
(3)过C作CF⊥AD的延长线于点F.则四边形ABCF是正方形.
AE=AB-BE=12-4=8,
设DF=x,则AD=12-x,
根据(2)可得:DE=BE+DF=4+x,
在直角△ADE中,AE2+AD2=DE2,则82+(12-x)2=(4+x)2,
解得:x=1.
则DE=4+1=2.
【点睛】本题考查了全等三角形的判定和性质以及正方形的性质,解决本题的关键是注意每个题目之间的关系,正确作出辅助线.
23、 (1) 30;2;(2)x=1;(3)当x=时,y最大=;
【解析】
(1)如图1中,作DH⊥BC于H,则四边形ABHD是矩形.AD=BH=3,BC=6,CH=BC﹣BH=3,当等边三角形△EGF的高= 时,点G在AD上,此时x=2;
(2)根据勾股定理求出的长度,根据三角函数,求出∠ADB=30°,根据中点的定义得出根据等边三角形的性质得到,即可求出x的值;
(3)图2,图3三种情形解决问题.①当2
(1)作DH⊥BC于H,则四边形ABHD是矩形.
∵AD=BH=3,BC=6,
∴CH=BC﹣BH=3,
在Rt△DHC中,CH=3,
∴
当等边三角形△EGF的高等于时,点G在AD上,此时x=2,∠DCB=30°,
故答案为30,2,
(2)如图
∵AD∥BC
∴∠A=180°﹣∠ABC=180°﹣90°=90°
在Rt△ABD中,
∴∠ADB=30°
∵G是BD的中点
∴
∵AD∥BC
∴∠ADB=∠DBC=30°
∵△GEF是等边三角形,
∴∠GFE=60°
∴∠BGF=90°
在Rt△BGF中,
∴2x=2即x=1;
(3)分两种情况:
当2<x<3,如图2
点E、点F在线段BC上△GEF与四边形ABCD重叠部分为四边形EFNM
∵∠FNC=∠GFE﹣∠DCB=60°﹣30°=30°
∴∠FNC=∠DCB
∴FN=FC=6﹣2x
∴GN=x﹣(6﹣2x)=3x﹣6
∵∠FNC=∠GNM=30°,∠G=60°
∴∠GMN=90°
在Rt△GNM中,
∴
∴当时,最大
当3≤x<6时,如图3,
点E在线段BC上,点F在线段BC的延长线上,△GEF与四边形ABCD重叠部分为△ECP
∵∠PCE=30°,∠PEC=60°
∴∠EPC=90°
在Rt△EPC中EC=6﹣x,
对称轴为
当x<6时,y随x的增大而减小
∴当x=3时,最大
综上所述:当时,最大
【点睛】
属于四边形的综合题,考查动点问题,等边三角形的性质,三角函数,二次函数的最值等,综合性比较强,难度较大.
24、 (1)工人甲第12天生产的产品数量为70件;(2)第11天时,利润最大,最大利润是845元.
【解析】
分析:(1)根据y=70求得x即可;(2)先根据函数图象求得P关于x的函数解析式,再结合x的范围分类讨论,根据“总利润=单件利润×销售量”列出函数解析式,由二次函数的性质求得最值即可.
本题解析:
解:(1)若7.5x=70,得x=>4,不符合题意;
则5x+10=70,
解得x=12.
答:工人甲第12天生产的产品数量为70件.
(2)由函数图象知,当0≤x≤4时,P=40,
当4
∴P=x+36.
①当0≤x≤4时,W=(60-40)·7.5x=150x,
∵W随x的增大而增大,
∴当x=4时,W最大=600;
②当4
∵845>600,
∴当x=11时,W取得最大值845元.
答:第11天时,利润最大,最大利润是845元.
点睛:本题考查了一次函数的应用、二次函数的应用,解题的关键是理解题意,记住利润=出厂价-成本,学会利用函数的性质解决最值问题.
25、(1)C(2,-1),A(1,0);(2)①3,②0<t<1,③(+2,1)或(-+2,1)或(-1,0)
【解析】
(1)令y=0得:x2-1x+3=0,然后求得方程的解,从而可得到A、B的坐标,然后再求得抛物线的对称轴为x=2,最后将x=2代入可求得点C的纵坐标;
(2)①抛物线与y轴交点坐标为(0,3),然后做出直线y=3,然后找出交点个数即可;②将y=3代入抛物线的解析式求得对应的x的值,从而可得到直线y=3与“L双抛图形”恰好有3个交点时t的取值,然后结合函数图象可得到“L双抛图形”与直线y=3恰好有两个交点时t的取值范围;③首先证明四边形ACQP为平行四边形,由可得到点P的纵坐标为1,然后由函数解析式可求得点P的横坐标.
【详解】
(1)令y=0得:x2-1x+3=0,解得:x=1或x=3,
∴A(1,0),B(3,0),
∴抛物线的对称轴为x=2,
将x=2代入抛物线的解析式得:y=-1,
∴C(2,-1);
(2)①将x=0代入抛物线的解析式得:y=3,
∴抛物线与y轴交点坐标为(0,3),
如图所示:作直线y=3,
由图象可知:直线y=3与“L双抛图形”有3个交点,
故答案为3;
②将y=3代入得:x2-1x+3=3,解得:x=0或x=1,
由函数图象可知:当0<t<1时,抛物线L关于直线x=t的“L双抛图形”与直线y=3恰好有两个交点,
故答案为0<t<1.
③如图2所示:
∵PQ∥AC且PQ=AC,
∴四边形ACQP为平行四边形,
又∵点C的纵坐标为-1,
∴点P的纵坐标为1,
将y=1代入抛物线的解析式得:x2-1x+3=1,解得:x=+2或x=-+2.
∴点P的坐标为(+2,1)或(-+2,1),
当点P(-1,0)时,也满足条件.
综上所述,满足条件的点(+2,1)或(-+2,1)或(-1,0)
【点睛】
本题主要考查的是二次函数的综合应用,解答本题需要同学们理解“L双抛图形”的定义,数形结合以及方程思想的应用是解题的关键.
26、(4)60;(4)作图见试题解析;(4)4.
【解析】
试题分析:(4)利用科普类的人数以及所占百分比,即可求出被调查的学生人数;
(4)利用(4)中所求得出喜欢艺体类的学生数进而画出图形即可;
(4)首先求出样本中喜爱文学类图书所占百分比,进而估计全校最喜爱文学类图书的学生数.
试题解析:(4)被调查的学生人数为:44÷40%=60(人);
(4)喜欢艺体类的学生数为:60-44-44-46=8(人),
如图所示:
全校最喜爱文学类图书的学生约有:4400×=4(人).
考点:4.条形统计图;4.用样本估计总体;4.扇形统计图.
27、证明见解析.
【解析】
试题分析:根据等腰三角形的性质可证∠DBM=∠ECM,可证△BDM≌△CEM,可得MD=ME,即可解题.
试题解析:证明:△ABC中,∵AB=AC,∴∠DBM=∠ECM.
∵M是BC的中点,∴BM=CM.
在△BDM和△CEM中,∵,
∴△BDM≌△CEM(SAS).∴MD=ME.
考点:1.等腰三角形的性质;2.全等三角形的判定与性质.
2022年西藏达孜县重点中学中考数学最后冲刺浓缩精华卷含解析: 这是一份2022年西藏达孜县重点中学中考数学最后冲刺浓缩精华卷含解析,共24页。
2022届铜陵市重点中学中考数学最后冲刺浓缩精华卷含解析: 这是一份2022届铜陵市重点中学中考数学最后冲刺浓缩精华卷含解析,共25页。试卷主要包含了考生必须保证答题卡的整洁,中国古代在利用“计里画方”,一元二次方程=0的两个根是,定义等内容,欢迎下载使用。
2022届攀枝花市重点中学中考数学最后冲刺浓缩精华卷含解析: 这是一份2022届攀枝花市重点中学中考数学最后冲刺浓缩精华卷含解析,共20页。试卷主要包含了答题时请按要求用笔,若a+|a|=0,则等于,如图所示的几何体的左视图是等内容,欢迎下载使用。