终身会员
搜索
    上传资料 赚现金

    2022届嘉峪关市重点中学中考数学最后冲刺浓缩精华卷含解析

    立即下载
    加入资料篮
    2022届嘉峪关市重点中学中考数学最后冲刺浓缩精华卷含解析第1页
    2022届嘉峪关市重点中学中考数学最后冲刺浓缩精华卷含解析第2页
    2022届嘉峪关市重点中学中考数学最后冲刺浓缩精华卷含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届嘉峪关市重点中学中考数学最后冲刺浓缩精华卷含解析

    展开

    这是一份2022届嘉峪关市重点中学中考数学最后冲刺浓缩精华卷含解析,共20页。试卷主要包含了答题时请按要求用笔,式子有意义的x的取值范围是,下列实数为无理数的是等内容,欢迎下载使用。


    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.计算3a2-a2的结果是(  )
    A.4a2 B.3a2 C.2a2 D.3
    2.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B与灯塔P之间的距离为( )

    A.60海里 B.45海里 C.20海里 D.30海里
    3.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是(  )

    A.20° B.35° C.40° D.70°
    4.某小组5名同学在一周内参加家务劳动的时间如表所示,关于“劳动时间”的这组数据,以下说法正确的是(  )
    动时间(小时)
    3
    3.5
    4
    4.5
    人数
    1
    1
    2
    1
    A.中位数是4,平均数是3.75 B.众数是4,平均数是3.75
    C.中位数是4,平均数是3.8 D.众数是2,平均数是3.8
    5.如图,平行四边形ABCD中,点A在反比例函数y=(k≠0)的图象上,点D在y轴上,点B、点C在x轴上.若平行四边形ABCD的面积为10,则k的值是(  )

    A.﹣10 B.﹣5 C.5 D.10
    6. “龟兔赛跑”是同学们熟悉的寓言故事.如图所示,表示了寓言中的龟、兔的路程S和时间t的关系(其中直线段表示乌龟,折线段表示兔子).下列叙述正确的是( )

    A.赛跑中,兔子共休息了50分钟
    B.乌龟在这次比赛中的平均速度是0.1米/分钟
    C.兔子比乌龟早到达终点10分钟
    D.乌龟追上兔子用了20分钟
    7.式子有意义的x的取值范围是( )
    A.且x≠1 B.x≠1 C. D.且x≠1
    8.下列实数为无理数的是 ( )
    A.-5 B. C.0 D.π
    9.一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球、3个白球.从布袋中一次性摸出两个球,则摸出的两个球中至少有一个红球的概率是(  )
    A. B. C. D.
    10.如图,中,,,将绕点逆时针旋转得到,使得,延长交于点,则线段的长为( )

    A.4 B.5 C.6 D.7
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.已知直角三角形的两边长分别为3、1.则第三边长为________.
    12.如图,直线与x轴、y轴分别交于点A、B;点Q是以C(0,﹣1)为圆心、1为半径的圆上一动点,过Q点的切线交线段AB于点P,则线段PQ的最小是______.

    13.若式子在实数范围内有意义,则x的取值范围是   .
    14.若圆锥的母线长为4cm,其侧面积,则圆锥底面半径为 cm.
    15.如图,在平面直角坐标系中,已知点A(﹣4,0)、B(0,3),对△AOB连续作旋转变换依次得到三角形(1)、(2)、(3)、(4)、…,则第(5)个三角形的直角顶点的坐标是_____,第(2018)个三角形的直角顶点的坐标是______.

    16.已知a2+a=1,则代数式3﹣a﹣a2的值为_____.
    三、解答题(共8题,共72分)
    17.(8分)如图,在△ABC中,∠ACB=90°,O是AB上一点,以OA为半径的⊙O与BC相切于点D,与AB交于点E,连接ED并延长交AC的延长线于点F.
    (1)求证:AE=AF;
    (2)若DE=3,sin∠BDE=,求AC的长.

    18.(8分)草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x 的函数关系图象.
    (1)求y与x的函数关系式;
    (2)直接写出自变量x的取值范围.

    19.(8分)解方程
    20.(8分)某蔬菜加工公司先后两次收购某时令蔬菜200吨,第一批蔬菜价格为2000元/吨,因蔬菜大量上市,第二批收购时价格变为500元/吨,这两批蔬菜共用去16万元.
    (1)求两批次购蔬菜各购进多少吨?
    (2)公司收购后对蔬菜进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润800元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?
    21.(8分)中华文明,源远流长;中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:
    成绩x/分
    频数
    频率
    50≤x<60
    10
    0.05
     60≤x<70
    30
    0.15
     70≤x<80
    40
    n
     80≤x<90
    m
    0.35
     90≤x≤100
    50
    0.25
    请根据所给信息,解答下列问题:m=   ,n=   ;请补全频数分布直方图;若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?

    22.(10分)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处,如图1,已知折痕与边BC交于点O,连接AP、OP、OA.若△OCP与△PDA的面积比为1:4,求边CD的长.如图2,在(Ⅰ)的条件下,擦去折痕AO、线段OP,连接BP.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问当动点M、N在移动的过程中,线段EF的长度是否发生变化?若变化,说明变化规律.若不变,求出线段EF的长度.

    23.(12分)如图1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.

    (1)OC的长为  ;
    (2)D是OA上一点,以BD为直径作⊙M,⊙M交AB于点Q.当⊙M与y轴相切时,sin∠BOQ=  ;
    (3)如图2,动点P以每秒1个单位长度的速度,从点O沿线段OA向点A运动;同时动点D以相同的速度,从点B沿折线B﹣C﹣O向点O运动.当点P到达点A时,两点同时停止运动.过点P作直线PE∥OC,与折线O﹣B﹣A交于点E.设点P运动的时间为t(秒).求当以B、D、E为顶点的三角形是直角三角形时点E的坐标.
    24.计算:﹣16+(﹣)﹣2﹣|﹣2|+2tan60°



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    【分析】根据合并同类项法则进行计算即可得.
    【详解】3a2-a2
    =(3-1)a2
    =2a2,
    故选C.
    【点睛】本题考查了合并同类项,熟记合并同类项的法则是解题的关键.合并同类项就是把同类项的系数相加减,字母和字母的指数不变.
    2、D
    【解析】
    根据题意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP的长,求出答案.
    【详解】
    解:由题意可得:∠B=30°,AP=30海里,∠APB=90°,
    故AB=2AP=60(海里),
    则此时轮船所在位置B处与灯塔P之间的距离为:BP=(海里)
    故选:D.
    【点睛】
    此题主要考查了勾股定理的应用以及方向角,正确应用勾股定理是解题关键.
    3、B
    【解析】
    先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.再利用角平分线定义即可得出∠ACE=∠ACB=35°.
    【详解】
    ∵AD是△ABC的中线,AB=AC,∠CAD=20°,
    ∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.
    ∵CE是△ABC的角平分线,
    ∴∠ACE=∠ACB=35°.
    故选B.
    【点睛】
    本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.
    4、C
    【解析】
    试题解析:这组数据中4出现的次数最多,众数为4,
    ∵共有5个人,
    ∴第3个人的劳动时间为中位数,
    故中位数为:4,
    平均数为:=3.1.
    故选C.
    5、A
    【解析】
    作AE⊥BC于E,由四边形ABCD为平行四边形得AD∥x轴,则可判断四边形ADOE为矩形,所以S平行四边形ABCD=S矩形ADOE,根据反比例函数k的几何意义得到S矩形ADOE=|−k|,利用反比例函数图象得到.
    【详解】
    作AE⊥BC于E,如图,

    ∵四边形ABCD为平行四边形,
    ∴AD∥x轴,
    ∴四边形ADOE为矩形,
    ∴S平行四边形ABCD=S矩形ADOE,
    而S矩形ADOE=|−k|,
    ∴|−k|=1,
    ∵k<0,
    ∴k=−1.
    故选A.
    【点睛】
    本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.
    6、D
    【解析】
    分析:根据图象得出相关信息,并对各选项一一进行判断即可.
    详解:由图象可知,在赛跑中,兔子共休息了:50-10=40(分钟),故A选项错误;
    乌龟跑500米用了50分钟,平均速度为:(米/分钟),故B选项错误;
    兔子是用60分钟到达终点,乌龟是用50分钟到达终点,兔子比乌龟晚到达终点10分钟,故C选项错误;
    在比赛20分钟时,乌龟和兔子都距起点200米,即乌龟追上兔子用了20分钟,故D选项正确.
    故选D.
    点睛:本题考查了从图象中获取信息的能力.正确识别图象、获取信息并进行判断是解题的关键.
    7、A
    【解析】
    根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须且.故选A.
    8、D
    【解析】
    无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
    【详解】
    A、﹣5是整数,是有理数,选项错误;
    B、是分数,是有理数,选项错误;
    C、0是整数,是有理数,选项错误;
    D、π是无理数,选项正确.
    故选D.
    【点睛】
    此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
    9、D
    【解析】
    画出树状图得出所有等可能的情况数,找出恰好是两个红球的情况数,即可求出所求的概率.
    【详解】
    画树状图如下:

    一共有20种情况,其中两个球中至少有一个红球的有14种情况,
    因此两个球中至少有一个红球的概率是:.
    故选:D.
    【点睛】
    此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.
    10、B
    【解析】
    先利用已知证明,从而得出,求出BD的长度,最后利用求解即可.
    【详解】










    故选:B.
    【点睛】
    本题主要考查相似三角形的判定及性质,掌握相似三角形的性质是解题的关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、4或
    【解析】
    试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:
    ①长为3的边是直角边,长为3的边是斜边时:第三边的长为:;
    ②长为3、3的边都是直角边时:第三边的长为:;
    ∴第三边的长为:或4.
    考点:3.勾股定理;4.分类思想的应用.
    12、
    【解析】
    解:过点C作CP⊥直线AB于点P,过点P作⊙C的切线PQ,切点为Q,此时PQ最小,连接CQ,如图所示.
    当x=0时,y=3,∴点B的坐标为(0,3);
    当y=0时,x=4,∴点A的坐标为(4,0),∴OA=4,OB=3,∴AB==5,∴sinB=.
    ∵C(0,﹣1),∴BC=3﹣(﹣1)=4,∴CP=BC•sinB=.
    ∵PQ为⊙C的切线,∴在Rt△CQP中,CQ=1,∠CQP=90°,∴PQ==.
    故答案为.

    13、.
    【解析】
    根据二次根式被开方数必须是非负数的条件,
    要使在实数范围内有意义,必须.
    故答案为
    14、3
    【解析】
    ∵圆锥的母线长是5cm,侧面积是15πcm2,
    ∴圆锥的侧面展开扇形的弧长为:l==6π,
    ∵锥的侧面展开扇形的弧长等于圆锥的底面周长,∴r==3cm,
    15、(16,) (8068,)
    【解析】
    利用勾股定理列式求出AB的长,再根据图形写出第(5)个三角形的直角顶点的坐标即可;观察图形不难发现,每3个三角形为一个循环组依次循环,用2018除以3,根据商和余数的情况确定出第(2018)个三角形的直角顶点到原点O的距离,然后写出坐标即可.
    【详解】
    ∵点A(﹣4,0),B(0,3),
    ∴OA=4,OB=3,
    ∴AB==5,
    ∴第(2)个三角形的直角顶点的坐标是(4,);
    ∵5÷3=1余2,
    ∴第(5)个三角形的直角顶点的坐标是(16,),
    ∵2018÷3=672余2,
    ∴第(2018)个三角形是第672组的第二个直角三角形,
    其直角顶点与第672组的第二个直角三角形顶点重合,
    ∴第(2018)个三角形的直角顶点的坐标是(8068,).
    故答案为:(16,);(8068,)
    【点睛】
    本题考查了坐标与图形变化-旋转,解题的关键是根据题意找出每3个三角形为一个循环组依次循环.
    16、2
    【解析】
    ∵,
    ∴,
    故答案为2.

    三、解答题(共8题,共72分)
    17、(1)证明见解析;(2)1.
    【解析】
    (1)根据切线的性质和平行线的性质解答即可;
    (2)根据直角三角形的性质和三角函数解答即可.
    【详解】
    (1)连接OD,
    ∵OD=OE,
    ∴∠ODE=∠OED.
    ∵直线BC为⊙O的切线,
    ∴OD⊥BC.
    ∴∠ODB=90°.
    ∵∠ACB=90°,
    ∴OD∥AC.
    ∴∠ODE=∠F.
    ∴∠OED=∠F.
    ∴AE=AF;
    (2)连接AD,
    ∵AE是⊙O的直径,
    ∴∠ADE=90°,
    ∵AE=AF,
    ∴DF=DE=3,
    ∵∠ACB=90°,
    ∴∠DAF+∠F=90°,∠CDF+∠F=90°,
    ∴∠DAF=∠CDF=∠BDE,
    在Rt△ADF中,=sin∠DAF=sin∠BDE=,
    ∴AF=3DF=9,
    在Rt△CDF中,=sin∠CDF=sin∠BDE=,
    ∴CF=DF=1,
    ∴AC=AF﹣CF=1.

    【点睛】
    本题考查了切线的性质,解直角三角形的应用,等腰三角形的判定等,综合性较强,正确添加辅助线、熟练掌握和灵活运用相关知识是解题的关键.
    18、(1)y=-2x+31,(2)20≤x≤1
    【解析】
    试题分析:(1)根据函数图象经过点(20,300)和点(30,280),利用待定系数法即可求出y与x的函数关系式;
    (2)根据试销期间销售单价不低于成本单价,也不高于每千克1元,结合草莓的成本价即可得出x的取值范围.
    试题解析:
    (1)设y与x的函数关系式为y=kx+b,根据题意,得:

    解得:
    ∴y与x的函数解析式为y=-2x+31,
    (2) ∵试销期间销售单价不低于成本单价,也不高于每千克1元,且草莓的成本为每千克20元,
    ∴自变量x的取值范围是20≤x≤1.
    19、x=-1.
    【解析】
    解:方程两边同乘x-2,得2x=x-2+1
    解这个方程,得x= -1
    检验:x= -1时,x-2≠0
    ∴原方程的解是x= -1
    首先去掉分母,观察可得最简公分母是(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解
    20、(1)第一次购进40吨,第二次购进160吨;(2)为获得最大利润,精加工数量应为150吨,最大利润是1.
    【解析】
    (1)设第一批购进蒜薹a吨,第二批购进蒜薹b吨.构建方程组即可解决问题.
    (2)设精加工x吨,利润为w元,则粗加工(100-x)吨.利润w=800x+400(200﹣x)=400x+80000,再由x≤3(100-x),解得x≤150,即可解决问题.
    【详解】
    (1)设第一次购进a吨,第二次购进b吨,

    解得 ,
    答:第一次购进40吨,第二次购进160吨;
    (2)设精加工x吨,利润为w元,
    w=800x+400(200﹣x)=400x+80000,
    ∵x≤3(200﹣x),
    解得,x≤150,
    ∴当x=150时,w取得最大值,此时w=1,
    答:为获得最大利润,精加工数量应为150吨,最大利润是1.
    【点睛】
    本题考查了二元一次方程组的应用与一次函数的应用,解题的关键是熟练的掌握二元一次方程组的应用与一次函数的应用.
    21、(1)70,0.2(2)70(3)750
    【解析】
    (1)根据题意和统计表中的数据可以求得m、n的值;
    (2)根据(1)中求得的m的值,从而可以将条形统计图补充完整;
    (3)根据统计表中的数据可以估计该校参加这次比赛的3000名学生中成绩“优”等约有多少人.
    【详解】
    解:(1)由题意可得,
    m=200×0.35=70,n=40÷200=0.2,
    故答案为70,0.2;
    (2)由(1)知,m=70,
    补全的频数分布直方图,如下图所示;
    (3)由题意可得,
    该校参加这次比赛的3000名学生中成绩“优”等约有:3000×0.25=750(人),
    答:该校参加这次比赛的3000名学生中成绩“优”等约有750人.

    【点睛】
    本题考查频数分布直方图、频数分布表、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    22、(1)10;(2).
    【解析】
    (1)先证出∠C=∠D=90°,再根据∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可证出△OCP∽△PDA;根据△OCP与△PDA的面积比为1:4,得出CP=AD=4,设OP=x,则CO=8﹣x,由勾股定理得 x2=(8﹣x)2+42,求出x,最后根据AB=2OP即可求出边AB的长;
    (2)作MQ∥AN,交PB于点Q,求出MP=MQ,BN=QM,得出MP=MQ,根据ME⊥PQ,得出EQ=PQ,根据∠QMF=∠BNF,证出△MFQ≌△NFB,得出QF=QB,再求出EF=PB,由(1)中的结论求出PB=,最后代入EF=PB即可得出线段EF的长度不变
    【详解】
    (1)如图1,∵四边形ABCD是矩形,

    ∴∠C=∠D=90°,
    ∴∠1+∠3=90°,
    ∵由折叠可得∠APO=∠B=90°,
    ∴∠1+∠2=90°,∴∠2=∠3,
    又∵∠D=∠C,
    ∴△OCP∽△PDA;
    ∵△OCP与△PDA的面积比为1:4,
    ∴ ,∴ CP=AD=4
    设OP=x,则CO=8﹣x,
    在Rt△PCO中,∠C=90°,由勾股定理得 x2=(8﹣x)2+42,
    解得:x=5,∴AB=AP=2OP=10,∴边CD的长为10;
    (2)作MQ∥AN,交PB于点Q,如图2,

    ∵AP=AB,MQ∥AN,
    ∴∠APB=∠ABP=∠MQP.∴MP=MQ,∵BN=PM,
    ∴BN=QM.
    ∵MP=MQ,ME⊥PQ,
    ∴EQ=PQ.∵MQ∥AN,∴∠QMF=∠BNF,
    ∴△MFQ≌△NFB.
    ∴QF=FB,∴EF=EQ+QF=(PQ+QB)=PB,
    由(1)中的结论可得:PC=4,BC=8,∠C=90°,
    ∴PB=,∴EF=PB=2,
    ∴在(1)的条件下,当点M、N在移动过程中,线段EF的长度不变,它的长度为2.
    【点睛】
    本题考查了相似三角形的判定与性质、全等三角形的判定与性质、勾股定理、等腰三角形的性质,关键是做出辅助线,找出全等和相似的三角形
    23、(4)4;(2);(4)点E的坐标为(4,2)、(,)、(4,2).
    【解析】
    分析:(4)过点B作BH⊥OA于H,如图4(4),易证四边形OCBH是矩形,从而有OC=BH,只需在△AHB中运用三角函数求出BH即可.
    (2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图4(2),则有OH=2,BH=4,MN⊥OC.设圆的半径为r,则MN=MB=MD=r.在Rt△BHD中运用勾股定理可求出r=2,从而得到点D与点H重合.易证△AFG∽△ADB,从而可求出AF、GF、OF、OG、OB、AB、BG.设OR=x,利用BR2=OB2﹣OR2=BG2﹣RG2可求出x,进而可求出BR.在Rt△ORB中运用三角函数就可解决问题.
    (4)由于△BDE的直角不确定,故需分情况讨论,可分三种情况(①∠BDE=90°,②∠BED=90°,③∠DBE=90°)讨论,然后运用相似三角形的性质及三角函数等知识建立关于t的方程就可解决问题.
    详解:(4)过点B作BH⊥OA于H,如图4(4),则有∠BHA=90°=∠COA,∴OC∥BH.
    ∵BC∥OA,∴四边形OCBH是矩形,∴OC=BH,BC=OH.
    ∵OA=6,BC=2,∴AH=0A﹣OH=OA﹣BC=6﹣2=4.
    ∵∠BHA=90°,∠BAO=45°,
    ∴tan∠BAH==4,∴BH=HA=4,∴OC=BH=4.
    故答案为4.
    (2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图4(2).
    由(4)得:OH=2,BH=4.
    ∵OC与⊙M相切于N,∴MN⊥OC.
    设圆的半径为r,则MN=MB=MD=r.
    ∵BC⊥OC,OA⊥OC,∴BC∥MN∥OA.
    ∵BM=DM,∴CN=ON,∴MN=(BC+OD),∴OD=2r﹣2,∴DH==.
    在Rt△BHD中,∵∠BHD=90°,∴BD2=BH2+DH2,∴(2r)2=42+(2r﹣4)2.
    解得:r=2,∴DH=0,即点D与点H重合,∴BD⊥0A,BD=AD.
    ∵BD是⊙M的直径,∴∠BGD=90°,即DG⊥AB,∴BG=AG.
    ∵GF⊥OA,BD⊥OA,∴GF∥BD,∴△AFG∽△ADB,
    ∴===,∴AF=AD=2,GF=BD=2,∴OF=4,
    ∴OG===2.
    同理可得:OB=2,AB=4,∴BG=AB=2.
    设OR=x,则RG=2﹣x.
    ∵BR⊥OG,∴∠BRO=∠BRG=90°,∴BR2=OB2﹣OR2=BG2﹣RG2,
    ∴(2)2﹣x2=(2)2﹣(2﹣x)2.
    解得:x=,∴BR2=OB2﹣OR2=(2)2﹣()2=,∴BR=.
    在Rt△ORB中,sin∠BOR===.
    故答案为.
    (4)①当∠BDE=90°时,点D在直线PE上,如图2.
    此时DP=OC=4,BD+OP=BD+CD=BC=2,BD=t,OP=t. 则有2t=2.
    解得:t=4.则OP=CD=DB=4.
    ∵DE∥OC,∴△BDE∽△BCO,∴==,∴DE=2,∴EP=2,
    ∴点E的坐标为(4,2).
    ②当∠BED=90°时,如图4.
    ∵∠DBE=OBC,∠DEB=∠BCO=90°,∴△DBE∽△OBC,
    ∴==,∴BE=t.
    ∵PE∥OC,∴∠OEP=∠BOC.
    ∵∠OPE=∠BCO=90°,∴△OPE∽△BCO,
    ∴==,∴OE=t.
    ∵OE+BE=OB=2t+t=2.
    解得:t=,∴OP=,OE=,∴PE==,
    ∴点E的坐标为().
    ③当∠DBE=90°时,如图4.
    此时PE=PA=6﹣t,OD=OC+BC﹣t=6﹣t.
    则有OD=PE,EA==(6﹣t)=6﹣t,
    ∴BE=BA﹣EA=4﹣(6﹣t)=t﹣2.
    ∵PE∥OD,OD=PE,∠DOP=90°,∴四边形ODEP是矩形,
    ∴DE=OP=t,DE∥OP,∴∠BED=∠BAO=45°.
    在Rt△DBE中,cos∠BED==,∴DE=BE,
    ∴t=t﹣2)=2t﹣4.
    解得:t=4,∴OP=4,PE=6﹣4=2,∴点E的坐标为(4,2).
    综上所述:当以B、D、E为顶点的三角形是直角三角形时点E的坐标为(4,2)、()、(4,2).


    点睛:本题考查了圆周角定理、切线的性质、相似三角形的判定与性质、三角函数的定义、平行线分线段成比例、矩形的判定与性质、勾股定理等知识,还考查了分类讨论的数学思想,有一定的综合性.
    24、1+3.
    【解析】
    先根据乘方、负指数幂、绝对值、特殊角的三角函数值分别进行计算,然后根据实数的运算法则求得计算结果.
    【详解】
    ﹣16+(﹣)﹣2﹣|﹣2|+2tan60°
    =﹣1+4﹣(2﹣)+2,
    =﹣1+4﹣2++2,
    =1+3.
    【点睛】
    本题主要考查了实数的综合运算能力,解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、二次根式、绝对值等考点的运算法则.

    相关试卷

    2022年西藏达孜县重点中学中考数学最后冲刺浓缩精华卷含解析:

    这是一份2022年西藏达孜县重点中学中考数学最后冲刺浓缩精华卷含解析,共24页。

    2022届铜陵市重点中学中考数学最后冲刺浓缩精华卷含解析:

    这是一份2022届铜陵市重点中学中考数学最后冲刺浓缩精华卷含解析,共25页。试卷主要包含了考生必须保证答题卡的整洁,中国古代在利用“计里画方”,一元二次方程=0的两个根是,定义等内容,欢迎下载使用。

    2022届攀枝花市重点中学中考数学最后冲刺浓缩精华卷含解析:

    这是一份2022届攀枝花市重点中学中考数学最后冲刺浓缩精华卷含解析,共20页。试卷主要包含了答题时请按要求用笔,若a+|a|=0,则等于,如图所示的几何体的左视图是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map