|试卷下载
终身会员
搜索
    上传资料 赚现金
    浦东新区重点达标名校2022年中考猜题数学试卷含解析
    立即下载
    加入资料篮
    浦东新区重点达标名校2022年中考猜题数学试卷含解析01
    浦东新区重点达标名校2022年中考猜题数学试卷含解析02
    浦东新区重点达标名校2022年中考猜题数学试卷含解析03
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    浦东新区重点达标名校2022年中考猜题数学试卷含解析

    展开
    这是一份浦东新区重点达标名校2022年中考猜题数学试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,运用乘法公式计算,如图图形中,是中心对称图形的是,如图的立体图形,从左面看可能是,|﹣3|的值是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图图形中,可以看作中心对称图形的是(  )
    A. B. C. D.
    2.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论: ① abc<0;② 2a+b=0; ③ b2-4ac<0;④ 9a+3b+c>0; ⑤ c+8a<0.正确的结论有(  ).

    A.1个 B.2个 C.3个 D.4个
    3.如图,已知边长为2的正三角形ABC顶点A的坐标为(0,6),BC的中点D在y轴上,且在点A下方,点E是边长为2、中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE的最小值为(  )

    A.3 B.4﹣ C.4 D.6﹣2
    4.等腰三角形一边长等于5,一边长等于10,它的周长是( )
    A.20 B.25 C.20或25 D.15
    5.如图,点A、B、C在⊙O上,∠OAB=25°,则∠ACB的度数是(  )

    A.135° B.115° C.65° D.50°
    6.如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E;B、E是半圆弧的三等分点,的长为,则图中阴影部分的面积为(  )

    A. B. C. D.
    7.运用乘法公式计算(4+x)(4﹣x)的结果是(  )
    A.x2﹣16 B.16﹣x2 C.16﹣8x+x2 D.8﹣x2
    8.如图图形中,是中心对称图形的是( )
    A. B. C. D.
    9.如图的立体图形,从左面看可能是(  )

    A. B.
    C. D.
    10.|﹣3|的值是( )
    A.3 B. C.﹣3 D.﹣
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.化简二次根式的正确结果是_____.
    12.计算:(﹣)﹣2﹣2cos60°=_____.
    13.如图,AB是⊙O的直径,AB=2,点C在⊙O上,∠CAB=30°,D为 的中点,P是直径AB上一动点,则PC+PD的最小值为________.

    14.已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m=_____.
    15.a(a+b)﹣b(a+b)=_____.
    16.已知点A(4,y1),B(,y2),C(-2,y3)都在二次函数y=(x-2)2-1的图象上,则y1,y2,y3的大小关系是 .
    三、解答题(共8题,共72分)
    17.(8分)某公司计划购买A,B两种型号的电脑,已知购买一台A型电脑需0.6万元,购买一台B型电脑需0.4万元,该公司准备投入资金y万元,全部用于购进35台这两种型号的电脑,设购进A型电脑x台.
    (1)求y关于x的函数解析式;
    (2)若购进B型电脑的数量不超过A型电脑数量的2倍,则该公司至少需要投入资金多少万元?
    18.(8分)如图,在△ABC中,BC=12,tanA=,∠B=30°;求AC和AB的长.

    19.(8分)阅读下列材料,解答下列问题:
    材料1.把一个多项式化成几个整式的积的形式,这种变形叫做因式分解,也叫分解因式.如果把整式的乘法看成一个变形过程,那么多项式的因式分解就是它的逆过程.
    公式法(平方差公式、完全平方公式)是因式分解的一种基本方法.如对于二次三项式a2+2ab+b2,可以逆用乘法公式将它分解成(a+b)2的形式,我们称a2+2ab+b2为完全平方式.但是对于一般的二次三项式,就不能直接应用完全平方了,我们可以在二次三项式中先加上一项,使其配成完全平方式,再减去这项,使整个式子的值不变,于是有:
    x2+2ax﹣3a2
    =x2+2ax+a2﹣a2﹣3a2
    =(x+a)2﹣(2a)2
    =(x+3a)(x﹣a)
    材料2.因式分解:(x+y)2+2(x+y)+1
    解:将“x+y”看成一个整体,令x+y=A,则
    原式=A2+2A+1=(A+1)2
    再将“A”还原,得:原式=(x+y+1)2.
    上述解题用到的是“整体思想”,整体思想是数学解题中常见的一种思想方法,请你解答下列问题:
    (1)根据材料1,把c2﹣6c+8分解因式;
    (2)结合材料1和材料2完成下面小题:
    ①分解因式:(a﹣b)2+2(a﹣b)+1;
    ②分解因式:(m+n)(m+n﹣4)+3.
    20.(8分)已知AB是⊙O的直径,弦CD与AB相交,∠BAC=40°.
    (1)如图1,若D为弧AB的中点,求∠ABC和∠ABD的度数;
    (2)如图2,过点D作⊙O的切线,与AB的延长线交于点P,若DP∥AC,求∠OCD的度数.

    21.(8分)地球环境问题已经成为我们日益关注的问题.学校为了普及生态环保知识,提高学生生态环境保护意识,举办了“我参与,我环保”的知识竞赛.以下是从初一、初二两个年级随机抽取20名同学的测试成绩进行调查分析,成绩如下:
    初一:76 88 93 65 78 94 89 68 95 50
    89 88 89 89 77 94 87 88 92 91
    初二:74 97 96 89 98 74 69 76 72 78
    99 72 97 76 99 74 99 73 98 74
    (1)根据上面的数据,将下列表格补充完整;
    整理、描述数据:
    成绩x
    人数
    班级





    初一
    1
    2
    3

    6
    初二
    0
    1
    10
    1
    8
    (说明:成绩90分及以上为优秀,80~90分为良好,60~80分为合格,60分以下为不合格)
    分析数据:
    年级
    平均数
    中位数
    众数
    初一
    84
    88.5

    初二
    84.2

    74
    (2)得出结论:
    你认为哪个年级掌握生态环保知识水平较好并说明理由.(至少从两个不同的角度说明推断的合理性).
    22.(10分)在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.
    (1)求证:四边形DEBF是矩形;
    (2)若AF平分∠DAB,AE=3,BF=4,求▱ABCD的面积.

    23.(12分)如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD,过点D作DE⊥AC,垂足为点E,交AB的延长线于点F.
    (1)求证:EF是⊙O的切线.
    (2)如果⊙O的半径为5,sin∠ADE=,求BF的长.

    24.解分式方程:
    - =



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    根据 把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.
    【详解】
    解:A、不是中心对称图形,故此选项不合题意;
    B、不是中心对称图形,故此选项不合题意;
    C、不是中心对称图形,故此选项不合题意;
    D、是中心对称图形,故此选项符合题意;
    故选D.
    【点睛】
    此题主要考查了中心对称图形,关键掌握中心对称图形定义.
    2、C
    【解析】
    由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
    【详解】
    解:抛物线开口向下,得:a<0;抛物线的对称轴为x=-=1,则b=-2a,2a+b=0,b=-2a,故b>0;抛物线交y轴于正半轴,得:c>0.
    ∴abc<0, ①正确;
    2a+b=0,②正确;
    由图知:抛物线与x轴有两个不同的交点,则△=b2-4ac>0,故③错误;
    由对称性可知,抛物线与x轴的正半轴的交点横坐标是x=3,所以当x=3时,y= 9a+3b+c=0,故④错误;
    观察图象得当x=-2时,y<0,
    即4a-2b+c<0
    ∵b=-2a,
    ∴4a+4a+c<0
    即8a+c<0,故⑤正确.
    正确的结论有①②⑤,
    故选:C
    【点睛】
    主要考查图象与二次函数系数之间的关系,会利用对称轴的表达式求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
    3、B
    【解析】
    分析:首先得到当点E旋转至y轴上时DE最小,然后分别求得AD、OE′的长,最后求得DE′的长即可.
    详解:如图,当点E旋转至y轴上时DE最小;

    ∵△ABC是等边三角形,D为BC的中点,
    ∴AD⊥BC
    ∵AB=BC=2
    ∴AD=AB•sin∠B=,
    ∵正六边形的边长等于其半径,正六边形的边长为2,
    ∴OE=OE′=2
    ∵点A的坐标为(0,6)
    ∴OA=6
    ∴DE′=OA-AD-OE′=4-
    故选B.
    点睛:本题考查了正多边形的计算及等边三角形的性质,解题的关键是从图形中整理出直角三角形.
    4、B
    【解析】
    题目中没有明确腰和底,故要分情况讨论,再结合三角形的三边关系分析即可.
    【详解】
    当5为腰时,三边长为5、5、10,而,此时无法构成三角形;
    当5为底时,三边长为5、10、10,此时可以构成三角形,它的周长
    故选B.
    5、B
    【解析】
    由OA=OB得∠OAB=∠OBA=25°,根据三角形内角和定理计算出∠AOB=130°,则根据圆周角定理得∠P= ∠AOB,然后根据圆内接四边形的性质求解.
    【详解】
    解:在圆上取点 P ,连接 PA 、 PB.
    ∵OA=OB ,
    ∴∠OAB=∠OBA=25° ,
    ∴∠AOB=180°−2×25°=130° ,
    ∴∠P=∠AOB=65°,
    ∴∠ACB=180°−∠P=115°.

    故选B.
    【点睛】
    本题考查的是圆,熟练掌握圆周角定理是解题的关键.
    6、D
    【解析】
    连接BD,BE,BO,EO,先根据B、E是半圆弧的三等分点求出圆心角∠BOD的度数,再利用弧长公式求出半圆的半径R,再利用圆周角定理求出各边长,通过转化将阴影部分的面积转化为S△ABC﹣S扇形BOE,然后分别求出面积相减即可得出答案.
    【详解】
    解:连接BD,BE,BO,EO,

    ∵B,E是半圆弧的三等分点,
    ∴∠EOA=∠EOB=∠BOD=60°,
    ∴∠BAD=∠EBA=30°,
    ∴BE∥AD,
    ∵ 的长为 ,

    解得:R=4,
    ∴AB=ADcos30°= ,
    ∴BC=AB=,
    ∴AC=BC=6,
    ∴S△ABC=×BC×AC=××6=,
    ∵△BOE和△ABE同底等高,
    ∴△BOE和△ABE面积相等,
    ∴图中阴影部分的面积为:S△ABC﹣S扇形BOE=
    故选:D.
    【点睛】
    本题主要考查弧长公式,扇形面积公式,圆周角定理等,掌握圆的相关性质是解题的关键.
    7、B
    【解析】
    根据平方差公式计算即可得解.
    【详解】

    故选:B.
    【点睛】
    本题主要考查了整式的乘法公式,熟练掌握平方差公式的运算是解决本题的关键.
    8、D
    【解析】
    根据中心对称图形的概念和识别.
    【详解】
    根据中心对称图形的概念和识别,可知D是中心对称图形,A、C是轴对称图形,D既不是中心对称图形,也不是轴对称图形.
    故选D.
    【点睛】
    本题考查中心对称图形,掌握中心对称图形的概念,会判断一个图形是否是中心对称图形.
    9、A
    【解析】
    根据三视图的性质即可解题.
    【详解】
    解:根据三视图的概念可知,该立体图形是三棱柱,左视图应为三角形,且直角应该在左下角,
    故选A.
    【点睛】
    本题考查了三视图的识别,属于简单题,熟悉三视图的概念是解题关键.
    10、A
    【解析】
    分析:根据绝对值的定义回答即可.
    详解:负数的绝对值等于它的相反数,

    故选A.
    点睛:考查绝对值,非负数的绝对值等于它本身,负数的绝对值等于它的相反数.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、﹣a
    【解析】
    , .
    .
    12、3
    【解析】
    按顺序先进行负指数幂的运算、代入特殊角的三角函数值,然后再进行减法运算即可.
    【详解】
    (﹣)﹣2﹣2cos60°
    =4-2×
    =3,
    故答案为3.
    【点睛】
    本题考查了实数的运算,涉及了负指数幂、特殊角的三角函数值,熟练掌握相关的运算法则是解题的关键.
    13、
    【解析】
    作出D关于AB的对称点D’,则PC+PD的最小值就是CD’的长度,在△COD'中根据边角关系即可求解.
    【详解】

    解:如图:作出D关于AB的对称点D’,连接OC,OD',CD'.
    又∵点C在⊙O上,∠CAB=30°,D为弧BC的中点,即,
    ∴∠BAD'=∠CAB=15°.
    ∴∠CAD'=45°.
    ∴∠COD'=90°.则△COD'是等腰直角三角形.
    ∵OC=OD'=AB=1,

    故答案为:.
    【点睛】
    本题考查了轴对称-最短路线问题,勾股定理,垂径定理,正确作出辅助线是解题的关键.
    14、1
    【解析】
    【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程,通过解关于m的方程求得m的值即可.
    【详解】∵关于x的一元二次方程mx1+5x+m1﹣1m=0有一个根为0,
    ∴m1﹣1m=0且m≠0,
    解得,m=1,
    故答案是:1.
    【点睛】本题考查了一元二次方程ax1+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.
    15、(a+b)(a﹣b).
    【解析】
    先确定公因式为(a+b),然后提取公因式后整理即可.
    【详解】
    a(a+b)﹣b(a+b)=(a+b)(a﹣b).
    【点睛】
    本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.
    16、y3>y1>y2.
    【解析】
    试题分析:将A,B,C三点坐标分别代入解析式,得:y1=3,y2=5-4,y3=15,∴y3>y1>y2.
    考点:二次函数的函数值比较大小.

    三、解答题(共8题,共72分)
    17、(1)y=0.2x+14(0<x<35);(2)该公司至少需要投入资金16.4万元.
    【解析】
    (1)根据题意列出关于x、y的方程,整理得到y关于x的函数解析式;
    (2)解不等式求出x的范围,根据一次函数的性质计算即可.
    【详解】
    解:(1)由题意得,0.6x+0.4×(35﹣x)=y,
    整理得,y=0.2x+14(0<x<35);
    (2)由题意得,35﹣x≤2x,
    解得,x≥,
    则x的最小整数为12,
    ∵k=0.2>0,
    ∴y随x的增大而增大,
    ∴当x=12时,y有最小值16.4,
    答:该公司至少需要投入资金16.4万元.
    【点睛】
    本题考查的是一次函数的应用、一元一次不等式的应用,掌握一次函数的性质是解题的关键.
    18、8+6.
    【解析】
    如图作CH⊥AB于H.在Rt△BHC求出CH、BH,在Rt△ACH中求出AH、AC即可解决问题;
    【详解】
    解:如图作CH⊥AB于H.

    在Rt△BCH中,∵BC=12,∠B=30°,
    ∴CH=BC=6,BH==6,
    在Rt△ACH中,tanA==,
    ∴AH=8,
    ∴AC==10,
    【点睛】
    本题考查解直角三角形,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
    19、(1)(c-4)(c-2);(2)①(a-b+1)2;②(m+n-1)(m+n-3).
    【解析】
    (1)根据材料1,可以对c2-6c+8分解因式;
    (2)①根据材料2的整体思想可以对(a-b)2+2(a-b)+1分解因式;
    ②根据材料1和材料2可以对(m+n)(m+n-4)+3分解因式.
    【详解】
    (1)c2-6c+8
    =c2-6c+32-32+8
    =(c-3)2-1
    =(c-3+1)(c-3+1)
    =(c-4)(c-2);
    (2)①(a-b)2+2(a-b)+1
    设a-b=t,
    则原式=t2+2t+1=(t+1)2,
    则(a-b)2+2(a-b)+1=(a-b+1)2;
    ②(m+n)(m+n-4)+3
    设m+n=t,
    则t(t-4)+3
    =t2-4t+3
    =t2-4t+22-22+3
    =(t-2)2-1
    =(t-2+1)(t-2-1)
    =(t-1)(t-3),
    则(m+n)(m+n-4)+3=(m+n-1)(m+n-3).
    【点睛】
    本题考查因式分解的应用,解题的关键是明确题意,可以根据材料中的例子对所求的式子进行因式分解.
    20、(1)45°;(2)26°.
    【解析】
    (1)根据圆周角和圆心角的关系和图形可以求得∠ABC和∠ABD的大小;
    (2)根据题意和平行线的性质、切线的性质可以求得∠OCD的大小.
    【详解】
    (1)∵AB是⊙O的直径,∠BAC=38°, ∴∠ACB=90°,
    ∴∠ABC=∠ACB﹣∠BAC=90°﹣38°=52°,
    ∵D为弧AB的中点,∠AOB=180°,∴∠AOD=90°,
    ∴∠ABD=45°;

    (2)连接OD,
    ∵DP切⊙O于点D,∴OD⊥DP,即∠ODP=90°,
    ∵DP∥AC,∠BAC=38°,∴∠P=∠BAC=38°,
    ∵∠AOD是△ODP的一个外角,
    ∴∠AOD=∠P+∠ODP=128°,∴∠ACD=64°,
    ∵OC=OA,∠BAC=38°,∴∠OCA=∠BAC=38°,
    ∴∠OCD=∠ACD﹣∠OCA=64°﹣38°=26°.
    【点睛】
    本题考查切线的性质、圆周角定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    21、(1)1,2,19;(2)初一年级掌握生态环保知识水平较好.
    【解析】
    (1)根据初一、初二同学的测试成绩以及众数与中位数的定义即可完成表格;
    (2)根据平均数、众数、中位数的统计意义回答.
    【详解】
    (1)补全表格如下:
    整理、描述数据:
    初一成绩x满足10≤x≤19的有:11 19 19 11 19 19 17 11,共1个.
    故答案为:1.

    分析数据:
    在76 11 93 65 71 94 19 61 95 50 19 11 19 19 2 94 17 11 92 91中,19出现的次数最多,故众数为19;
    把初二的抽查成绩从小到大排列为:69 72 72 73 74 74 74 74 76 76 71 19 96 97 97 91 91 99 99 99,第10个数为76,第11个数为71,故中位数为:(76+71)÷2=2.
    故答案为:19,2.

    (2)初一年级掌握生态环保知识水平较好.
    因为两个年级的平均数相差不大,但是初一年级同学的中位数是11.5,众数是19,初二年级同学的中位数是2,众数是74,即初一年级同学的中位数与众数明显高于初二年级同学的成绩,所以初一年级掌握生态环保知识水平较好.
    【点睛】
    本题考查了频数(率)分布表,众数、中位数以及平均数.掌握众数、中位数以及平均数的定义是解题的关键.
    22、(1)证明见解析(2)3
    【解析】
    试题分析:(1)根据平行四边形的性质,可证DF∥EB,然后根据一组对边平行且相等的四边形为平行四边形可证四边形DEBF是平行四边形,然后根据有一个角是直角的平行四边形是矩形可证;
    (2)根据(1)可知DE=BF,然后根据勾股定理可求AD的长,然后根据角平分线的性质和平行线的性质可求得DF=AD,然后可求CD的长,最后可用平行四边形的面积公式可求解.
    试题解析:(1)∵四边形ABCD是平行四边形,
    ∴DC∥AB,即DF∥EB.
    又∵DF=BE,
    ∴四边形DEBF是平行四边形.
    ∵DE⊥AB,
    ∴∠EDB=90°.
    ∴四边形DEBF是矩形.
    (2)∵四边形DEBF是矩形,
    ∴DE=BF=4,BD=DF.
    ∵DE⊥AB,
    ∴AD===1.
    ∵DC∥AB,
    ∴∠DFA=∠FAB.
    ∵AF平分∠DAB,
    ∴∠DAF=∠FAB.
    ∴∠DAF=∠DFA.
    ∴DF=AD=1.
    ∴BE=1.
    ∴AB=AE+BE=3+1=2.
    ∴S□ABCD=AB·BF=2×4=3.
    23、(1)答案见解析;(2).
    【解析】
    试题分析:(1)连接OD,AB为⊙O的直径得∠ADB=90°,由AB=AC,根据等腰三角形性质得AD平分BC,即DB=DC,则OD为△ABC的中位线,所以OD∥AC,而DE⊥AC,则OD⊥DE,然后根据切线的判定方法即可得到结论;
    (2)由∠DAC=∠DAB,根据等角的余角相等得∠ADE=∠ABD,在Rt△ADB中,利用解直角三角形的方法可计算出AD=8,在Rt△ADE中可计算出AE=,然后由OD∥AE,得△FDO∽△FEA,再利用相似比可计算出BF.
    试题解析:(1)证明:连结OD

    ∵OD=OB∴∠ODB=∠DBO
    又AB=AC
    ∴∠DBO=∠C
    ∴∠ODB =∠C
    ∴OD ∥AC
    又DE⊥AC
    ∴DE ⊥OD
    ∴EF是⊙O的切线.
    (2)∵AB是直径
    ∴∠ADB=90 °
    ∴∠ADC=90 °
    即∠1+∠2=90 °又∠C+∠2=90 °
    ∴∠1=∠C
    ∴∠1 =∠3


    ∴AD=8
    在Rt△ADB中,AB=10∴BD=6
    在又Rt△AED中,

    设BF=x
    ∵OD ∥AE
    ∴△ODF∽△AEF
    ∴ ,即,
    解得:x=
    24、方程无解
    【解析】
    找出分式方程的最简公分母,去分母后转化为整式方程,求出整式方程的解得到x的值,再代入最简公分母进行检验即可.
    【详解】
    解:方程的两边同乘(x+1)(x−1),
    得:,


    ∴此方程无解
    【点睛】
    本题主要考查了解分式方程,解分式方程的步骤:①去分母;②解整式方程;③验根.

    相关试卷

    重庆市巫溪县重点达标名校2022年中考猜题数学试卷含解析: 这是一份重庆市巫溪县重点达标名校2022年中考猜题数学试卷含解析,共21页。试卷主要包含了关于x的方程=无解,则k的值为等内容,欢迎下载使用。

    2022年山东菏泽郓城重点达标名校中考数学猜题卷含解析: 这是一份2022年山东菏泽郓城重点达标名校中考数学猜题卷含解析,共19页。试卷主要包含了的倒数是等内容,欢迎下载使用。

    2022年甘肃省高台县重点达标名校中考猜题数学试卷含解析: 这是一份2022年甘肃省高台县重点达标名校中考猜题数学试卷含解析,共19页。试卷主要包含了如图,下列算式的运算结果正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map