2022届安徽省合肥市庐阳区重点达标名校中考猜题数学试卷含解析
展开
这是一份2022届安徽省合肥市庐阳区重点达标名校中考猜题数学试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,如图所示的几何体的主视图是,计算﹣1﹣等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为21,则BC的长为( )
A.16 B.14 C.12 D.6
2.下列一元二次方程中,有两个不相等实数根的是( )
A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=0
3.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于( )
A.42° B.28° C.21° D.20°
4.如图,一个几何体由5个大小相同、棱长为1的正方体搭成,则这个几何体的左视图的面积为( )
A.5 B.4 C.3 D.2
5.如图由四个相同的小立方体组成的立体图像,它的主视图是( ).
A. B. C. D.
6.如图所示的几何体的主视图是( )
A. B. C. D.
7.如图,AB是⊙O的直径,点C,D,E在⊙O上,若∠AED=20°,则∠BCD的度数为( )
A.100° B.110° C.115° D.120°
8.计算﹣1﹣(﹣4)的结果为( )
A.﹣3 B.3 C.﹣5 D.5
9.下列图形中,可以看作是中心对称图形的是( )
A. B. C. D.
10.如图,扇形AOB 中,半径OA=2,∠AOB=120°,C 是弧AB的中点,连接AC、BC,则图中阴影部分面积是 ( )
A. B.
C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.为响应“书香成都”建设的号召,在全校形成良好的人文阅读风尚,成都市某中学随机调查了部分学生平均每天的阅读时间,统计结果如图所示,则在本次调查中,阅读时间的中位数是________小时.
12.已知是一元二次方程的一个根,则方程的另一个根是________.
13.的相反数是______.
14.要使式子有意义,则的取值范围是__________.
15.如图是由大小完全相同的正六边形组成的图形,小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色,则上方的正六边形涂红色的概率是_______.
16.因式分解:=______.
三、解答题(共8题,共72分)
17.(8分)如图,四边形ABCD中,∠C=90°,AD⊥DB,点E为AB的中点,DE∥BC.
(1)求证:BD平分∠ABC;
(2)连接EC,若∠A=30°,DC=,求EC的长.
18.(8分)如图,经过原点的抛物线y=﹣x2+2mx(m>0)与x轴的另一个交点为A,过点P(1,m)作直线PA⊥x轴于点M,交抛物线于点B.记点B关于抛物线对称轴的对称点为C(点B、C不重合),连接CB、CP.
(I)当m=3时,求点A的坐标及BC的长;
(II)当m>1时,连接CA,若CA⊥CP,求m的值;
(III)过点P作PE⊥PC,且PE=PC,当点E落在坐标轴上时,求m的值,并确定相对应的点E的坐标.
19.(8分)某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件.写出销售量y件与销售单价x元之间的函数关系式;写出销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式;若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,则商场销售该品牌童装获得的最大利润是多少?
20.(8分)如图,△ABC中,∠A=90°,AB=AC=4,D是BC边上一点,将点D绕点A逆时针旋转60°得到点E,连接CE.
(1)当点E在BC边上时,画出图形并求出∠BAD的度数;
(2)当△CDE为等腰三角形时,求∠BAD的度数;
(3)在点D的运动过程中,求CE的最小值.
(参考数值:sin75°=, cos75°=,tan75°=)
21.(8分)阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:,善于思考的小明进行了以下探索:
设(其中均为整数),则有.
∴.这样小明就找到了一种把部分的式子化为平方式的方法.
请你仿照小明的方法探索并解决下列问题:
当均为正整数时,若,用含m、n的式子分别表示,得= ,= ;
(2)利用所探索的结论,找一组正整数,填空: + =( + )2;
(3)若,且均为正整数,求的值.
22.(10分)爸爸和小芳驾车去郊外登山,欣赏美丽的达子香(兴安杜鹃),到了山下,爸爸让小芳先出发6min,然后他再追赶,待爸爸出发24min时,妈妈来电话,有急事,要求立即回去.于是爸爸和小芳马上按原路下山返回(中间接电话所用时间不计),二人返回山下的时间相差4min,假设小芳和爸爸各自上、下山的速度是均匀的,登山过程中小芳和爸爸之间的距离s(单位:m)关于小芳出发时间t(单位:min)的函数图象如图,请结合图象信息解答下列问题:
(1)小芳和爸爸上山时的速度各是多少?
(2)求出爸爸下山时CD段的函数解析式;
(3)因山势特点所致,二人相距超过120m就互相看不见,求二人互相看不见的时间有多少分钟?
23.(12分)图中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上
(1)画出将△ABC绕点B按逆时针方向旋转90°后所得到的△A1BC1;
(2)画出将△ABC向右平移6个单位后得到的△A2B2C2;
(3)在(1)中,求在旋转过程中△ABC扫过的面积.
24.如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC.
(1)求证:四边形DBEC是菱形;
(2)若AD=3, DF=1,求四边形DBEC面积.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
先根据等腰三角形三线合一知D为BC中点,由点E为AC的中点知DE为△ABC中位线,故△ABC的周长是△CDE的周长的两倍,由此可求出BC的值.
【详解】
∵AB=AC=15,AD平分∠BAC,
∴D为BC中点,
∵点E为AC的中点,
∴DE为△ABC中位线,
∴DE=AB,
∴△ABC的周长是△CDE的周长的两倍,由此可求出BC的值.
∴AB+AC+BC=42,
∴BC=42-15-15=12,
故选C.
【点睛】
此题主要考查三角形的中位线定理,解题的关键是熟知等腰三角形的三线合一定理.
2、B
【解析】
分析:根据一元二次方程根的判别式判断即可.
详解:A、x2+6x+9=0.
△=62-4×9=36-36=0,
方程有两个相等实数根;
B、x2=x.
x2-x=0.
△=(-1)2-4×1×0=1>0.
方程有两个不相等实数根;
C、x2+3=2x.
x2-2x+3=0.
△=(-2)2-4×1×3=-8<0,
方程无实根;
D、(x-1)2+1=0.
(x-1)2=-1,
则方程无实根;
故选B.
点睛:本题考查的是一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.
3、B
【解析】
利用OB=DE,OB=OD得到DO=DE,则∠E=∠DOE,根据三角形外角性质得∠1=∠DOE+∠E,所以∠1=2∠E,同理得到∠AOC=∠C+∠E=3∠E,然后利用∠E=∠AOC进行计算即可.
【详解】
解:连结OD,如图,
∵OB=DE,OB=OD,
∴DO=DE,
∴∠E=∠DOE,
∵∠1=∠DOE+∠E,
∴∠1=2∠E,
而OC=OD,
∴∠C=∠1,
∴∠C=2∠E,
∴∠AOC=∠C+∠E=3∠E,
∴∠E=∠AOC=×84°=28°.
故选:B.
【点睛】
本题考查了圆的认识:掌握与圆有关的概念( 弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了等腰三角形的性质.
4、C
【解析】
根据左视图是从左面看到的图形求解即可.
【详解】
从左面看,可以看到3个正方形,面积为3,
故选:C.
【点睛】
本题考查三视图的知识,解决此类图的关键是由三视图得到相应的平面图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图.
5、D
【解析】
从正面看,共2列,左边是1个正方形,
右边是2个正方形,且下齐.
故选D.
6、A
【解析】
找到从正面看所得到的图形即可.
【详解】
解:从正面可看到从左往右2列一个长方形和一个小正方形,
故选A.
【点睛】
本题考查了三视图的知识,主视图是从物体的正面看得到的视图.
7、B
【解析】
连接AD,BD,由圆周角定理可得∠ABD=20°,∠ADB=90°,从而可求得∠BAD=70°,再由圆的内接四边形对角互补得到∠BCD=110°.
【详解】
如下图,连接AD,BD,
∵同弧所对的圆周角相等,∴∠ABD=∠AED=20°,
∵AB为直径,∴∠ADB=90°,
∴∠BAD=90°-20°=70°,
∴∠BCD=180°-70°=110°.
故选B
【点睛】
本题考查圆中的角度计算,熟练运用圆周角定理和内接四边形的性质是关键.
8、B
【解析】
原式利用减法法则变形,计算即可求出值.
【详解】
,
故选:B.
【点睛】
本题主要考查了有理数的加减,熟练掌握有理数加减的运算法则是解决本题的关键.
9、A
【解析】
分析:根据中心对称的定义,结合所给图形即可作出判断.
详解:A、是中心对称图形,故本选项正确;
B、不是中心对称图形,故本选项错误;
C、不是中心对称图形,故本选项错误;
D、不是中心对称图形,故本选项错误;
故选:A.
点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.
10、A
【解析】
试题分析:连接AB、OC,ABOC,所以可将四边形AOBC分成三角形ABC、和三角形AOB,进行求面积,求得四边形面积是,扇形面积是S=πr2= ,所以阴影部分面积是扇形面积减去四边形面积即.故选A.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、1
【解析】
由统计图可知共有:8+19+10+3=40人,中位数应为第20与第21个的平均数,
而第20个数和第21个数都是1(小时),则中位数是1小时.
故答案为1.
12、
【解析】
通过观察原方程可知,常数项是一未知数,而一次项系数为常数,因此可用两根之和公式进行计算,将2-代入计算即可.
【详解】
设方程的另一根为x1,
又∵x=2-,由根与系数关系,得x1+2-=4,解得x1=2+.
故答案为:
【点睛】
解决此类题目时要认真审题,确定好各系数的数值与正负,然后适当选择一个根与系数的关系式求解.
13、﹣.
【解析】
根据只有符号不同的两个数叫做互为相反数解答.
【详解】
的相反数是.
故答案为.
【点睛】
本题考查的知识点是相反数,解题关键是熟记相反数的概念.
14、
【解析】
根据二次根式被开方数必须是非负数的条件可得关于x的不等式,解不等式即可得.
【详解】
由题意得:
2-x≥0,
解得:x≤2,
故答案为x≤2.
15、
【解析】
试题分析:上方的正六边形涂红色的概率是,故答案为.
考点:概率公式.
16、2(x+3)(x﹣3).
【解析】
试题分析:先提公因式2后,再利用平方差公式分解即可,即=2(x2-9)=2(x+3)(x-3).
考点:因式分解.
三、解答题(共8题,共72分)
17、(1)见解析;(2).
【解析】
(1)直接利用直角三角形的性质得出,再利用DE∥BC,得出∠2=∠3,进而得出答案;
(2)利用已知得出在Rt△BCD中,∠3=60°,,得出DB的长,进而得出EC的长.
【详解】
(1)证明:∵AD⊥DB,点E为AB的中点,
∴.
∴∠1=∠2.
∵DE∥BC,
∴∠2=∠3.
∴∠1=∠3.
∴BD平分∠ABC.
(2)解:∵AD⊥DB,∠A=30°,
∴∠1=60°.
∴∠3=∠2=60°.
∵∠BCD=90°,
∴∠4=30°.
∴∠CDE=∠2+∠4=90°.
在Rt△BCD中,∠3=60°,,
∴DB=2.
∵DE=BE,∠1=60°,
∴DE=DB=2.
∴.
【点睛】
此题主要考查了直角三角形斜边上的中线与斜边的关系,正确得出DB,DE的长是解题关键.
18、(I)4;(II) (III)(2,0)或(0,4)
【解析】
(I)当m=3时,抛物线解析式为y=-x2+6x,解方程-x2+6x=0得A(6,0),利用对称性得到C(5,5),从而得到BC的长;
(II)解方程-x2+2mx=0得A(2m,0),利用对称性得到C(2m-1,2m-1),再根据勾股定理和两点间的距离公式得到(2m-2)2+(m-1)2+12+(2m-1)2=(2m-1)2+m2,然后解方程即可;
(III)如图,利用△PME≌△CBP得到PM=BC=2m-2,ME=BP=m-1,则根据P点坐标得到2m-2=m,解得m=2,再计算出ME=1得到此时E点坐标;作PH⊥y轴于H,如图,利用△PHE′≌△PBC得到PH=PB=m-1,HE′=BC=2m-2,利用P(1,m)得到m-1=1,解得m=2,然后计算出HE′得到E′点坐标.
【详解】
解:(I)当m=3时,抛物线解析式为y=﹣x2+6x,
当y=0时,﹣x2+6x=0,解得x1=0,x2=6,则A(6,0),
抛物线的对称轴为直线x=3,
∵P(1,3),
∴B(1,5),
∵点B关于抛物线对称轴的对称点为C
∴C(5,5),
∴BC=5﹣1=4;
(II)当y=0时,﹣x2+2mx=0,解得x1=0,x2=2m,则A(2m,0),
B(1,2m﹣1),
∵点B关于抛物线对称轴的对称点为C,而抛物线的对称轴为直线x=m,
∴C(2m﹣1,2m﹣1),
∵PC⊥PA,
∴PC2+AC2=PA2,
∴(2m﹣2)2+(m﹣1)2+12+(2m﹣1)2=(2m﹣1)2+m2,
整理得2m2﹣5m+3=0,解得m1=1,m2=,
即m的值为;
(III)如图,
∵PE⊥PC,PE=PC,
∴△PME≌△CBP,
∴PM=BC=2m﹣2,ME=BP=2m﹣1﹣m=m﹣1,
而P(1,m)
∴2m﹣2=m,解得m=2,
∴ME=m﹣1=1,
∴E(2,0);
作PH⊥y轴于H,如图,
易得△PHE′≌△PBC,
∴PH=PB=m﹣1,HE′=BC=2m﹣2,
而P(1,m)
∴m﹣1=1,解得m=2,
∴HE′=2m﹣2=2,
∴E′(0,4);
综上所述,m的值为2,点E的坐标为(2,0)或(0,4).
【点睛】
本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会运用全等三角形的知识解决线段相等的问题;理解坐标与图形性质,记住两点间的距离公式.
19、(1);(2);(3)最多获利4480元.
【解析】
(1)销售量y为200件加增加的件数(80﹣x)×20;
(2)利润w等于单件利润×销售量y件,即W=(x﹣60)(﹣20x+1800),整理即可;
(3)先利用二次函数的性质得到w=﹣20x2+3000x﹣108000的对称轴为x=75,而﹣20x+1800≥240,x≤78,得76≤x≤78,根据二次函数的性质得到当76≤x≤78时,W随x的增大而减小,把x=76代入计算即可得到商场销售该品牌童装获得的最大利润.
【详解】
(1)根据题意得,y=200+(80﹣x)×20=﹣20x+1800,
所以销售量y件与销售单价x元之间的函数关系式为y=﹣20x+1800(60≤x≤80);
(2)W=(x﹣60)y=(x﹣60)(﹣20x+1800)=﹣20x2+3000x﹣108000,
所以销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式为:
W=﹣20x2+3000x﹣108000;
(3)根据题意得,﹣20x+1800≥240,解得x≤78,∴76≤x≤78,
w=﹣20x2+3000x﹣108000,对称轴为x=﹣=75,
∵a=﹣20<0,
∴抛物线开口向下,∴当76≤x≤78时,W随x的增大而减小,
∴x=76时,W有最大值,最大值=(76﹣60)(﹣20×76+1800)=4480(元).
所以商场销售该品牌童装获得的最大利润是4480元.
【点睛】
二次函数的应用.
20、(1)∠BAD=15°;(2)∠BAC=45°或∠BAD =60°;(3)CE=.
【解析】
(1)如图1中,当点E在BC上时.只要证明△BAD≌△CAE,即可推出∠BAD=∠CAE=(90°-60°)=15°;
(2)分两种情形求解①如图2中,当BD=DC时,易知AD=CD=DE,此时△DEC是等腰三角形.②如图3中,当CD=CE时,△DEC是等腰三角形;
(3)如图4中,当E在BC上时,E记为E′,D记为D′,连接EE′.作CM⊥EE′于M,E′N⊥AC于N,DE交AE′于O.首先确定点E的运动轨迹是直线EE′(过点E与BC成60°角的直线上),可得EC的最小值即为线段CM的长(垂线段最短).
【详解】
解:(1)如图1中,当点E在BC上时.
∵AD=AE,∠DAE=60°,
∴△ADE是等边三角形,
∴∠ADE=∠AED=60°,
∴∠ADB=∠AEC=120°,
∵AB=AC,∠BAC=90°,
∴∠B=∠C=45°,
在△ABD和△ACE中,
∠B=∠C,∠ADB=∠AEC,AB=AC,
∴△BAD≌△CAE,
∴∠BAD=∠CAE=(90°-60°)=15°.
(2)①如图2中,当BD=DC时,易知AD=CD=DE,此时△DEC是等腰三角形,∠BAD=∠BAC=45°.
②如图3中,当CD=CE时,△DEC是等腰三角形.
∵AD=AE,
∴AC垂直平分线段DE,
∴∠ACD=∠ACE=45°,
∴∠DCE=90°,
∴∠EDC=∠CED=45°,
∵∠B=45°,
∴∠EDC=∠B,
∴DE∥AB,
∴∠BAD=∠ADE=60°.
(3)如图4中,当E在BC上时,E记为E′,D记为D′,连接EE′.作CM⊥EE′于M,E′N⊥AC于N,DE交AE′于O.
∵∠AOE=∠DOE′,∠AE′D=∠AEO,
∴△AOE∽△DOE′,
∴AO:OD=EO:OE',
∴AO:EO=OD:OE',
∵∠AOD=∠EOE′,
∴△AOD∽△EOE′,
∴∠EE′O=∠ADO=60°,
∴点E的运动轨迹是直线EE′(过点E与BC成60°角的直线上),
∴EC的最小值即为线段CM的长(垂线段最短),
设E′N=CN=a,则AN=4-a,
在Rt△ANE′中,tan75°=AN:NE',
∴2+=,
∴a=2-,
∴CE′=CN=2-.
在Rt△CE′M中,CM=CE′•cos30°=,
∴CE的最小值为.
【点睛】
本题考查几何变换综合题、等腰直角三角形的性质、等边三角形的性质、全等三角形的判定和性质、相似三角形的判定和性质、轨迹等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,学会利用垂线段最短解决最值问题,属于中考压轴题.
21、(1),;(2)2,2,1,1(答案不唯一);(3)=7或=1.
【解析】
(1)∵,
∴,
∴a=m2+3n2,b=2mn.
故答案为m2+3n2,2mn.
(2)设m=1,n=2,∴a=m2+3n2=1,b=2mn=2.
故答案为1,2,1,2(答案不唯一).
(3)由题意,得a=m2+3n2,b=2mn.
∵2=2mn,且m、n为正整数,
∴m=2,n=1或m=1,n=2,
∴a=22+3×12=7,或a=12+3×22=1.
22、(1)小芳上山的速度为20m/min,爸爸上山的速度为28m/min;(2)爸爸下山时CD段的函数解析式为y=12x﹣288(24≤x≤40);(3)二人互相看不见的时间有7.1分钟.
【解析】
分析:(1)根据速度=路程÷时间可求出小芳上山的速度;根据速度=路程÷时间+小芳的速度可求出爸爸上山的速度;
(2)根据爸爸及小芳的速度结合点C的横坐标(6+24=30),可得出点C的坐标,由点D的横坐标比点E少4可得出点D的坐标,再根据点C、D的坐标利用待定系数法可求出CD段的函数解析式;
(3)根据点D、E的坐标利用待定系数法可求出DE段的函数解析式,分别求出CD、DE段纵坐标大于120时x的取值范围,结合两个时间段即可求出结论.
详解:(1)小芳上山的速度为120÷6=20(m/min),
爸爸上山的速度为120÷(21﹣6)+20=28(m/min).
答:小芳上山的速度为20m/min,爸爸上山的速度为28m/min.
(2)∵(28﹣20)×(24+6﹣21)=72(m),
∴点C的坐标为(30,72);
∵二人返回山下的时间相差4min,44﹣4=40(min),
∴点D的坐标为(40,192).
设爸爸下山时CD段的函数解析式为y=kx+b,
将C(30,72)、D(40,192)代入y=kx+b,
,解得:.
答:爸爸下山时CD段的函数解析式为y=12x﹣288(24≤x≤40).
(3)设DE段的函数解析式为y=mx+n,
将D(40,192)、E(44,0)代入y=mx+n,
,解得:,
∴DE段的函数解析式为y=﹣48x+2112(40≤x≤44).
当y=12x﹣288>120时,34<x≤40;
当y=﹣48x+2112>120时,40≤x<41.1.
41.1﹣34=7.1(min).
答:二人互相看不见的时间有7.1分钟.
点睛:本题考查了一次函数的应用、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:(1)根据数量关系,列式计算;(2)根据点C、D的坐标,利用待定系数法求出CD段的函数解析式;(3)利用一次函数图象上点的坐标特征分别求出CD、DE段纵坐标大于120时x的取值范围.
23、(1)(1)如图所示见解析;(3)4π+1.
【解析】
(1)根据旋转的性质得出对应点位置,即可画出图形;
(1)利用平移的性质得出对应点位置,进而得出图形;
(3)根据△ABC扫过的面积等于扇形BCC1的面积与△A1BC1的面积和,列式进行计算即可.
【详解】
(1)如图所示,△A1BC1即为所求;
(1)如图所示,△A1B1C1即为所求;
(3)由题可得,△ABC扫过的面积==4π+1.
【点睛】
考查了利用旋转变换依据平移变换作图,熟练掌握网格结构,准确找出对应点位置作出图形是解题的关键.求扫过的面积的主要思路是将不规则图形面积转化为规则图形的面积.
24、 (1)见解析;(1)4
【解析】
(1)根据平行四边形的判定定理首先推知四边形DBEC为平行四边形,然后由直角三角形斜边上的中线等于斜边的一半得到其邻边相等:CD=BD,得证;
(1)由三角形中位线定理和勾股定理求得AB边的长度,然后根据菱形的性质和三角形的面积公式进行解答.
【详解】
(1)证明:∵CE∥DB,BE∥DC,
∴四边形DBEC为平行四边形.
又∵Rt△ABC中,∠ABC=90°,点D是AC的中点,
∴CD=BD=AC,
∴平行四边形DBEC是菱形;
(1)∵点D,F分别是AC,AB的中点,AD=3,DF=1,
∴DF是△ABC的中位线,AC=1AD=6,S△BCD=S△ABC
∴BC=1DF=1.
又∵∠ABC=90°,
∴AB= = = 4.
∵平行四边形DBEC是菱形,
∴S四边形DBEC=1S△BCD=S△ABC=AB•BC=×4×1=4.
点睛:本题考查了菱形的判定与性质,直角三角形斜边上的中线等于斜边的一半,三角形中位线定理.由点D是AC的中点,得到CD=BD是解答(1)的关键,由菱形的性质和三角形的面积公式得到S四边形DBEC=S△ABC是解(1)的关键.
相关试卷
这是一份新疆乌鲁木齐天山区重点达标名校2021-2022学年中考猜题数学试卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,计算4+,下列图形中,主视图为①的是,已知,下列说法中,不正确的是等内容,欢迎下载使用。
这是一份浦东新区重点达标名校2022年中考猜题数学试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,运用乘法公式计算,如图图形中,是中心对称图形的是,如图的立体图形,从左面看可能是,|﹣3|的值是等内容,欢迎下载使用。
这是一份2022年山东菏泽郓城重点达标名校中考数学猜题卷含解析,共19页。试卷主要包含了的倒数是等内容,欢迎下载使用。