上海市金山区重点达标名校2022年中考数学押题试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(共10小题,每小题3分,共30分)
1.某品牌的饮水机接通电源就进入自动程序:开机加热到水温100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系,直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间x(min)的关系如图所示,水温从100℃降到35℃所用的时间是( )
A.27分钟 B.20分钟 C.13分钟 D.7分钟
2.如图,是由几个相同的小正方形搭成几何体的左视图,这几个几何体的摆搭方式可能是( )
A. B. C. D.
3.下列命题是真命题的是( )
A.过一点有且只有一条直线与已知直线平行
B.对角线相等且互相垂直的四边形是正方形
C.平分弦的直径垂直于弦,并且平分弦所对的弧
D.若三角形的三边a,b,c满足a2+b2+c2=ac+bc+ab,则该三角形是正三角形
4.利用运算律简便计算52×(–999)+49×(–999)+999正确的是
A.–999×(52+49)=–999×101=–100899
B.–999×(52+49–1)=–999×100=–99900
C.–999×(52+49+1)=–999×102=–101898
D.–999×(52+49–99)=–999×2=–1998
5.有m辆客车及n个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①40m+10=43m﹣1;②;③;④40m+10=43m+1,其中正确的是( )
A.①② B.②④ C.②③ D.③④
6.如图,在ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,,则DE:EC=( )
A.2:5 B.2:3 C.3:5 D.3:2
7.tan45°的值等于( )
A. B. C. D.1
8.一次函数y=kx+k(k≠0)和反比例函数在同一直角坐标系中的图象大致是( )
A. B. C. D.
9.下列几何体中,其三视图都是全等图形的是( )
A.圆柱 B.圆锥 C.三棱锥 D.球
10.如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为1.若AA'=1,则A'D等于( )
A.2 B.3 C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.抛物线y=﹣x2+bx+c的部分图象如图所示,则关于x的一元二次方程﹣x2+bx+c=0的解为_____.
12.在数轴上与表示的点距离最近的整数点所表示的数为_____.
13.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点处,当△为直角三角形时,BE的长为 .
14.不等式组有2个整数解,则m的取值范围是_____.
15.举重比赛的总成绩是选手的挺举与抓举两项成绩之和,若其中一项三次挑战失败,则该项成绩为 0,甲、乙是同一重量级别的举重选手,他们近三年六次重要比赛的成绩如下(单位:公斤):
如果你是教练,要选派一名选手参加国际比赛,那么你会选择_____(填“甲” 或“乙”),理由是___________.
16.不等式-2x+3>0的解集是___________________
三、解答题(共8题,共72分)
17.(8分)计算:.先化简,再求值:,其中.
18.(8分)先化简(-a+1)÷,并从0,-1,2中选一个合适的数作为a的值代入求值.
19.(8分)抛物线:与轴交于,两点(点在点左侧),抛物线的顶点为.
(1)抛物线的对称轴是直线________;
(2)当时,求抛物线的函数表达式;
(3)在(2)的条件下,直线:经过抛物线的顶点,直线与抛物线有两个公共点,它们的横坐标分别记为,,直线与直线的交点的横坐标记为,若当时,总有,请结合函数的图象,直接写出的取值范围.
20.(8分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线.交BC于点E.求证:BE=EC填空:①若∠B=30°,AC=2,则DE=______;
②当∠B=______度时,以O,D,E,C为顶点的四边形是正方形.
21.(8分)某中学为开拓学生视野,开展“课外读书周”活动,活动后期随机调查了九年级部分学生一周的课外阅读时间,并将结果绘制成两幅不完整的统计图,请你根据统计图的信息回答下列问题:
(1)本次调查的学生总数为_____人,被调查学生的课外阅读时间的中位数是_____小时,众数是_____小时;并补全条形统计图;
(2)在扇形统计图中,课外阅读时间为5小时的扇形的圆心角度数是_____;
(3)若全校九年级共有学生800人,估计九年级一周课外阅读时间为6小时的学生有多少人?
22.(10分)在△ABC中,已知AB=AC,∠BAC=90°,E为边AC上一点,连接BE.如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;如图2,D为AB上一点,且满足AE=AD,过点A作AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M,求证:BG=AF+FG.
23.(12分)如图,抛物线y=﹣x2﹣x+4与x轴交于A,B两点(A在B的左侧),与y轴交于点C.
(1)求点A,点B的坐标;
(2)P为第二象限抛物线上的一个动点,求△ACP面积的最大值.
24.计算下列各题:
(1)tan45°−sin60°•cos30°;
(2)sin230°+sin45°•tan30°.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
先利用待定系数法求函数解析式,然后将y=35代入,从而求解.
【详解】
解:设反比例函数关系式为:,将(7,100)代入,得k=700,
∴,
将y=35代入,
解得;
∴水温从100℃降到35℃所用的时间是:20-7=13,
故选C.
【点睛】
本题考查反比例函数的应用,利用数形结合思想解题是关键.
2、A
【解析】
根据左视图的概念得出各选项几何体的左视图即可判断.
【详解】
解:A选项几何体的左视图为
;
B选项几何体的左视图为
;
C选项几何体的左视图为
;
D选项几何体的左视图为
;
故选:A.
【点睛】
本题考查由三视图判断几何体,解题的关键是熟练掌握左视图的概念.
3、D
【解析】
根据真假命题的定义及有关性质逐项判断即可.
【详解】
A、真命题为:过直线外一点有且只有一条直线与已知直线平行,故本选项错误;
B、真命题为:对角线相等且互相垂直的四边形是正方形或等腰梯形,故本选项错误;
C、真命题为:平分弦的直径垂直于弦(非直径),并且平分弦所对的弧,故本选项错误;
D、∵a2+b2+c2=ac+bc+ab,∴2a2+2b2+2c2-2ac-2bc-2ab=0,∴(a-b)2+(a-c)2+(b-c)2=0,∴a=b=c,故本选项正确.
故选D.
【点睛】
本题考查了命题的真假,熟练掌握真假命题的定义及几何图形的性质是解答本题的关键,当命题的条件成立时,结论也一定成立的命题叫做真命题;当命题的条件成立时,不能保证命题的结论总是成立的命题叫做假命题.熟练掌握所学性质是解答本题的关键.
4、B
【解析】
根据乘法分配律和有理数的混合运算法则可以解答本题.
【详解】
原式=-999×(52+49-1)=-999×100=-1.
故选B.
【点睛】
本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.
5、D
【解析】
试题分析:首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.
解:根据总人数列方程,应是40m+10=43m+1,①错误,④正确;
根据客车数列方程,应该为,②错误,③正确;
所以正确的是③④.
故选D.
考点:由实际问题抽象出一元一次方程.
6、B
【解析】
∵四边形ABCD是平行四边形,
∴AB∥CD
∴∠EAB=∠DEF,∠AFB=∠DFE
∴△DEF∽△BAF
∴
∵,
∴DE:AB=2:5
∵AB=CD,
∴DE:EC=2:3
故选B
7、D
【解析】
根据特殊角三角函数值,可得答案.
【详解】
解:tan45°=1,
故选D.
【点睛】
本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.
8、C
【解析】
A、由反比例函数的图象在一、三象限可知k>0,由一次函数的图象过二、四象限可知k<0,两结论相矛盾,故选项错误; B、由反比例函数的图象在二、四象限可知k<0,由一次函数的图象与y轴交点在y轴的正半轴可知k>0,两结论相矛盾,故选项错误;C、由反比例函数的图象在二、四象限可知k<0,由一次函数的图象过二、三、四象限可知k<0,两结论一致,故选项正确;D、由反比例函数的图象在一、三象限可知k>0,由一次函数的图象与y轴交点在y轴的负半轴可知k<0,两结论相矛盾,故选项错误,
故选C.
9、D
【解析】
分析: 任意方向上的视图都是全等图形的几何体只有球,在任意方向上的视图都是圆,其他的几何体的视图都有不同的.
详解:圆柱,圆锥,三棱锥,球中,
三视图都是全等图形的几何体只有球,在任意方向上的视图都是圆,
故选D.
点睛: 本题考查简单几何体的三视图,本题解题的关键是看出各个图形的在任意方向上的视图.
10、A
【解析】
分析:由S△ABC=9、S△A′EF=1且AD为BC边的中线知S△A′DE=S△A′EF=2,S△ABD=S△ABC=,根据△DA′E∽△DAB知,据此求解可得.
详解:如图,
∵S△ABC=9、S△A′EF=1,且AD为BC边的中线,
∴S△A′DE=S△A′EF=2,S△ABD=S△ABC=,
∵将△ABC沿BC边上的中线AD平移得到△A'B'C',
∴A′E∥AB,
∴△DA′E∽△DAB,
则,即,
解得A′D=2或A′D=-(舍),
故选A.
点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、x1=1,x2=﹣1.
【解析】
直接观察图象,抛物线与x轴交于1,对称轴是x=﹣1,所以根据抛物线的对称性可以求得抛物线与x轴的另一交点坐标,从而求得关于x的一元二次方程﹣x2+bx+c=0的解.
【详解】
解:观察图象可知,抛物线y=﹣x2+bx+c与x轴的一个交点为(1,0),对称轴为x=﹣1,
∴抛物线与x轴的另一交点坐标为(﹣1,0),
∴一元二次方程﹣x2+bx+c=0的解为x1=1,x2=﹣1.
故本题答案为:x1=1,x2=﹣1.
【点睛】
本题考查了二次函数与一元二次方程的关系.一元二次方程-x2+bx+c=0的解实质上是抛物线y=-x2+bx+c与x轴交点的横坐标的值.
12、3
【解析】
≈3.317,且在3和4之间,∵3.317-3=0.317,4-3.317=0.683,
且0.683>0.317,∴距离整数点3最近.
13、1或.
【解析】
当△CEB′为直角三角形时,有两种情况:
①当点B′落在矩形内部时,如答图1所示.
连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=1,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.
②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.
【详解】
当△CEB′为直角三角形时,有两种情况:
①当点B′落在矩形内部时,如答图1所示.
连结AC,
在Rt△ABC中,AB=1,BC=4,
∴AC==5,
∵∠B沿AE折叠,使点B落在点B′处,
∴∠AB′E=∠B=90°,
当△CEB′为直角三角形时,只能得到∠EB′C=90°,
∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,
∴EB=EB′,AB=AB′=1,
∴CB′=5-1=2,
设BE=x,则EB′=x,CE=4-x,
在Rt△CEB′中,
∵EB′2+CB′2=CE2,
∴x2+22=(4-x)2,解得,
∴BE=;
②当点B′落在AD边上时,如答图2所示.
此时ABEB′为正方形,∴BE=AB=1.
综上所述,BE的长为或1.
故答案为:或1.
14、1<m≤2
【解析】
首先根据不等式恰好有个整数解求出不等式组的解集为,再确定.
【详解】
不等式组有个整数解,
其整数解有、这个,
.
故答案为:.
【点睛】
此题主要考查了解不等式组,关键是正确理解解集的规律:同大取大,同小取小,大小小大中间找,大大小小找不到.
15、乙 乙的比赛成绩比较稳定.
【解析】
观察表格中的数据可知:甲的比赛成绩波动幅度较大,故甲的比赛成绩不稳定;乙的比赛成绩波动幅度较小,故乙的比赛成绩比较稳定,据此可得结论.
【详解】
观察表格中的数据可得,甲的比赛成绩波动幅度较大,故甲的比赛成绩不稳定; 乙的比赛成绩波动幅度较小,故乙的比赛成绩比较稳定;
所以要选派一名选手参加国际比赛,应该选择乙,理由是乙的比赛成绩比较稳定.
故答案为乙,乙的比赛成绩比较稳定.
【点睛】
本题主要考查了方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
16、x<
【解析】
根据解一元一次不等式基本步骤:移项、系数化为1可得.
【详解】
移项,得:-2x>-3,
系数化为1,得:x<,
故答案为x<.
【点睛】
本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.
三、解答题(共8题,共72分)
17、 (1)1;(2)2-1.
【解析】
(1)分别计算负指数幂、绝对值、零指数幂、特殊角的三角函数值、立方根;
(2)先把括号内通分相减,再计算分式的除法,除以一个分式,等于乘它的分子、分母交换位置.
【详解】
(1)原式=3+﹣1﹣2×+1﹣2=3+﹣1﹣+1﹣2=1.
(2)原式=[﹣]•
=•
=,
当x=﹣2时,原式= ==2-1.
【点睛】
本题考查负指数幂、绝对值、零指数幂、特殊角的三角函数值、立方根以及分式的化简求值,解题关键是熟练掌握以上性质和分式的混合运算.
18、1.
【解析】
试题分析:首先把括号的分式通分化简,后面的分式的分子分解因式,然后约分化简,接着计算分式的乘法,最后代入数值计算即可求解.
试题解析:原式===;
当a=0时,原式=1.
考点:分式的化简求值.
19、(1);(2);(3)
【解析】
(1)根据抛物线的函数表达式,利用二次函数的性质即可找出抛物线的对称轴;(2)根据抛物线的对称轴及即可得出点、的坐标,根据点的坐标,利用待定系数法即可求出抛物线的函数表达式;(3)利用配方法求出抛物线顶点的坐标,依照题意画出图形,观察图形可得出,再利用一次函数图象上点的坐标特征可得出,结合的取值范围即可得出的取值范围.
【详解】
(1)∵抛物线的表达式为,
∴抛物线的对称轴为直线.
故答案为:.
(2)∵抛物线的对称轴为直线,,
∴点的坐标为,点的坐标为.
将代入,得:,
解得:,
∴抛物线的函数表达式为.
(3)∵,
∴点的坐标为.
∵直线y=n与直线的交点的横坐标记为,且当时,总有,
∴x2
∴直线与轴的交点在下方,
∴.
∵直线:经过抛物线的顶点,
∴,
∴.
【点睛】
本题考查了二次函数的性质、待定系数法求二次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:(1)利用二次函数的性质找出抛物线的对称轴;(2)根据点的坐标,利用待定系数法求出二次函数表达式;(3)依照题意画出图形,利用数形结合找出.
20、(1)见解析;(2)①3;②1.
【解析】
(1)证出EC为⊙O的切线;由切线长定理得出EC=ED,再求得EB=ED,即可得出结论;
(2)①由含30°角的直角三角形的性质得出AB,由勾股定理求出BC,再由直角三角形斜边上的中线性质即可得出DE;
②由等腰三角形的性质,得到∠ODA=∠A=1°,于是∠DOC=90°然后根据有一组邻边相等的矩形是正方形,即可得到结论.
【详解】
(1)证明:连接DO.
∵∠ACB=90°,AC为直径,
∴EC为⊙O的切线;
又∵ED也为⊙O的切线,
∴EC=ED,
又∵∠EDO=90°,
∴∠BDE+∠ADO=90°,
∴∠BDE+∠A=90°
又∵∠B+∠A=90°,
∴∠BDE=∠B,
∴BE=ED,
∴BE=EC;
(2)解:①∵∠ACB=90°,∠B=30°,AC=2,
∴AB=2AC=4,
∴BC==6,
∵AC为直径,
∴∠BDC=∠ADC=90°,
由(1)得:BE=EC,
∴DE=BC=3,
故答案为3;
②当∠B=1°时,四边形ODEC是正方形,理由如下:
∵∠ACB=90°,
∴∠A=1°,
∵OA=OD,
∴∠ADO=1°,
∴∠AOD=90°,
∴∠DOC=90°,
∵∠ODE=90°,
∴四边形DECO是矩形,
∵OD=OC,
∴矩形DECO是正方形.
故答案为1.
【点睛】
本题考查了圆的切线性质、解直角三角形的知识、切线长定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
21、(1)50;4;5;画图见解析;(2)144°;(3)64
【解析】
(1)根据统计图可知,课外阅读达3小时的共10人,占总人数的20%,由此可得出总人数;求出课外阅读时间4小时与6小时男生的人数,再根据中位数与众数的定义即可得出结论;根据求出的人数补全条形统计图即可;
(2)求出课外阅读时间为5小时的人数,再求出其人数与总人数的比值即可得出扇形的圆心角度数;
(3)求出总人数与课外阅读时间为6小时的学生人数的百分比的积即可.
【详解】
解:(1)∵课外阅读达3小时的共10人,占总人数的20%,
∴=50(人).
∵课外阅读4小时的人数是32%,
∴50×32%=16(人),
∴男生人数=16﹣8=8(人);
∴课外阅读6小时的人数=50﹣6﹣4﹣8﹣8﹣8﹣12﹣3=1(人),
∴课外阅读3小时的是10人,4小时的是16人,5小时的是20人,6小时的是4人,
∴中位数是4小时,众数是5小时.
补全图形如图所示.
故答案为50,4,5;
(2)∵课外阅读5小时的人数是20人,
∴×360°=144°.
故答案为144°;
(3)∵课外阅读6小时的人数是4人,
∴800×=64(人).
答:九年级一周课外阅读时间为6小时的学生大约有64人.
【点睛】
本题考查了统计图与中位数、众数的知识点,解题的关键是熟练的掌握中位数与众数的定义与根据题意作图.
22、(1) (2)证明见解析
【解析】
(1)如图1中,在AB上取一点M,使得BM=ME,连接ME.,设AE=x,则ME=BM=2x,AM=x,根据AB2+AE2=BE2,可得方程(2x+x)2+x2=22,解方程即可解决问题.
(2)如图2中,作CQ⊥AC,交AF的延长线于Q,首先证明EG=MG,再证明FM=FQ即可解决问题.
【详解】
解:如图 1 中,在 AB 上取一点 M,使得 BM=ME,连接 ME.
在 Rt△ABE 中,∵OB=OE,
∴BE=2OA=2,
∵MB=ME,
∴∠MBE=∠MEB=15°,
∴∠AME=∠MBE+∠MEB=30°,设 AE=x,则 ME=BM=2x,AM=x,
∵AB2+AE2=BE2,
∴,
∴x= (负根已经舍弃),
∴AB=AC=(2+ )• ,
∴BC= AB= +1.
作 CQ⊥AC,交 AF 的延长线于 Q,
∵ AD=AE ,AB=AC ,∠BAE=∠CAD,
∴△ABE≌△ACD(SAS),
∴∠ABE=∠ACD,
∵∠BAC=90°,FG⊥CD,
∴∠AEB=∠CMF,
∴∠GEM=∠GME,
∴EG=MG,
∵∠ABE=∠CAQ,AB=AC,∠BAE=∠ACQ=90°,
∴△ABE≌△CAQ(ASA),
∴BE=AQ,∠AEB=∠Q,
∴∠CMF=∠Q,
∵∠MCF=∠QCF=45°,CF=CF,
∴△CMF≌△CQF(AAS),
∴FM=FQ,
∴BE=AQ=AF+FQ=AF=FM,
∵EG=MG,
∴BG=BE+EG=AF+FM+MG=AF+FG.
【点睛】
本题考查全等三角形的判定和性质、直角三角形斜边中线定理,等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
23、 (1) A(﹣4,0),B(2,0);(2)△ACP最大面积是4.
【解析】
(1)令y=0,得到关于x 的一元二次方程﹣x2﹣x+4=0,解此方程即可求得结果;
(2)先求出直线AC解析式,再作PD⊥AO交AC于D,设P(t,﹣t2﹣t+4),可表示出D点坐标,于是线段PD可用含t的代数式表示,所以S△ACP=PD×OA=PD×4=2PD,可得S△ACP关于t 的函数关系式,继而可求出△ACP面积的最大值.
【详解】
(1)解:设y=0,则0=﹣x2﹣x+4
∴x1=﹣4,x2=2
∴A(﹣4,0),B(2,0)
(2)作PD⊥AO交AC于D
设AC解析式y=kx+b
∴
解得:
∴AC解析式为y=x+4.
设P(t,﹣t2﹣t+4)则D(t,t+4)
∴PD=(﹣t2﹣t+4)﹣(t+4)=﹣t2﹣2t=﹣(t+2)2+2
∴S△ACP=PD×4=﹣(t+2)2+4
∴当t=﹣2时,△ACP最大面积4.
【点睛】
本题考查二次函数综合,解题的关键是掌握待定系数法进行求解.
24、(1);(2).
【解析】
(1)原式=1﹣×=1﹣=;
(2)原式=×+×=.
【点睛】
本题考查特殊角的三角函数值,熟练掌握每个特殊角的三角函数值是解此题的关键.
合肥市瑶海区重点达标名校2022年中考数学押题试卷含解析: 这是一份合肥市瑶海区重点达标名校2022年中考数学押题试卷含解析,共20页。试卷主要包含了下列事件中是必然事件的是,若分式方程无解,则a的值为等内容,欢迎下载使用。
2022年福建省沙县重点达标名校中考数学押题卷含解析: 这是一份2022年福建省沙县重点达标名校中考数学押题卷含解析,共21页。试卷主要包含了下列计算正确的是,二次函数的对称轴是,我省2013年的快递业务量为1,下列运算正确的是等内容,欢迎下载使用。
2022届云南省、贵州省重点达标名校中考数学押题试卷含解析: 这是一份2022届云南省、贵州省重点达标名校中考数学押题试卷含解析,共16页。试卷主要包含了考生必须保证答题卡的整洁,下列几何体是棱锥的是,下列各数中比﹣1小的数是,下列图形不是正方体展开图的是等内容,欢迎下载使用。