2022年山东菏泽郓城重点达标名校中考数学猜题卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.在反比例函数的图象的每一个分支上,y都随x的增大而减小,则k的取值范围是( )
A.k>1 B.k>0 C.k≥1 D.k<1
2.直线AB、CD相交于点O,射线OM平分∠AOD,点P在射线OM上(点P与点O不重合),如果以点P为圆心的圆与直线AB相离,那么圆P与直线CD的位置关系是( )
A.相离 B.相切 C.相交 D.不确定
3.如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE,记△ADE,△BCE的面积分别为S1,S2,( )
A.若2AD>AB,则3S1>2S2 B.若2AD>AB,则3S1<2S2
C.若2AD<AB,则3S1>2S2 D.若2AD<AB,则3S1<2S2
4.的倒数是( )
A. B.-3 C.3 D.
5.对于任意实数k,关于x的方程的根的情况为
A.有两个相等的实数根 B.没有实数根
C.有两个不相等的实数根 D.无法确定
6.已知关于x的一元二次方程有两个相等的实根,则k的值为( )
A. B. C.2或3 D.或
7.如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(,4),则△AOC的面积为
A.12 B.9 C.6 D.4
8.如图,四边形ABCD中,AB=CD,AD∥BC,以点B为圆心,BA为半径的圆弧与BC交于点E,四边形AECD是平行四边形,AB=3,则的弧长为( )
A. B.π C. D.3
9.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为( )
A.9人 B.10人 C.11人 D.12人
10.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有匹,小马有匹,则可列方程组为( )
A. B.
C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,在△ABC中,CA=CB,∠ACB=90°,AB=4,点D为AB的中点,以点D为圆心作圆,半圆恰好经过三角形的直角顶点C,以点D为顶点,作90°的∠EDF,与半圆交于点E,F,则图中阴影部分的面积是____.
12.如图,在△ABC中,AD、BE分别是BC、AC两边中线,则=_____.
13.某种商品因换季准备打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,则商品的定价是______元
14.在平面直角坐标系中,已知线段AB的两个端点的坐标分别是A(4,-1)、B(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(-2,2),则点B′的坐标为________.
15.用正三角形、正四边形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个,则第n个图案中正三角形的个数为 (用含n的代数式表示).
16.把16a3﹣ab2因式分解_____.
三、解答题(共8题,共72分)
17.(8分)如图,已知点A,B,C在半径为4的⊙O上,过点C作⊙O的切线交OA的延长线于点D.
(Ⅰ)若∠ABC=29°,求∠D的大小;
(Ⅱ)若∠D=30°,∠BAO=15°,作CE⊥AB于点E,求:
①BE的长;
②四边形ABCD的面积.
18.(8分)一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:
销售方式
粗加工后销售
精加工后销售
每吨获利(元)
1000
2000
已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.
(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?
(2)如果先进行精加工,然后进行粗加工.
①试求出销售利润元与精加工的蔬菜吨数之间的函数关系式;
②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?
19.(8分)已知,求代数式的值.
20.(8分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过上一点E作EG∥AC交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.
(1)求证:∠G=∠CEF;
(2)求证:EG是⊙O的切线;
(3)延长AB交GE的延长线于点M,若tanG =,AH=3,求EM的值.
21.(8分)已知,如图,是的平分线,,点在上,,,垂足分别是、.试说明:.
22.(10分)某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.
请根据图中信息解答下列问题:求这天的温度y与时间x(0≤x≤24)的函数关系式;求恒温系统设定的恒定温度;若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?
23.(12分)如图,已知点E,F分别是□ABCD的边BC,AD上的中点,且∠BAC=90°.
(1)求证:四边形AECF是菱形;
(2)若∠B=30°,BC=10,求菱形AECF面积.
24.解不等式组,并将解集在数轴上表示出来.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
根据反比例函数的性质,当反比例函数的系数大于0时,在每一支曲线上,y都随x的增大而减小,可得k﹣1>0,解可得k的取值范围.
【详解】
解:根据题意,在反比例函数图象的每一支曲线上,y都随x的增大而减小,
即可得k﹣1>0,
解得k>1.
故选A.
【点评】
本题考查了反比例函数的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.
2、A
【解析】
根据角平分线的性质和点与直线的位置关系解答即可.
【详解】
解:如图所示;
∵OM平分∠AOD,以点P为圆心的圆与直线AB相离,
∴以点P为圆心的圆与直线CD相离,
故选:A.
【点睛】
此题考查直线与圆的位置关系,关键是根据角平分线的性质解答.
3、D
【解析】
根据题意判定△ADE∽△ABC,由相似三角形的面积之比等于相似比的平方解答.
【详解】
∵如图,在△ABC中,DE∥BC,
∴△ADE∽△ABC,
∴,
∴若1AD>AB,即时,,
此时3S1>S1+S△BDE,而S1+S△BDE<1S1.但是不能确定3S1与1S1的大小,
故选项A不符合题意,选项B不符合题意.
若1AD<AB,即时,,
此时3S1<S1+S△BDE<1S1,
故选项C不符合题意,选项D符合题意.
故选D.
【点睛】
考查了相似三角形的判定与性质,三角形相似的判定一直是中考考查的热点之一,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.
4、A
【解析】
先求出,再求倒数.
【详解】
因为
所以的倒数是
故选A
【点睛】
考核知识点:绝对值,相反数,倒数.
5、C
【解析】
判断一元二次方程的根的情况,只要看根的判别式的值的符号即可:
∵a=1,b=,c=,
∴.
∴此方程有两个不相等的实数根.故选C.
6、A
【解析】
根据方程有两个相等的实数根结合根的判别式即可得出关于k的方程,解之即可得出结论.
【详解】
∵方程有两个相等的实根,
∴△=k2-4×2×3=k2-24=0,
解得:k=.
故选A.
【点睛】
本题考查了根的判别式,熟练掌握“当△=0时,方程有两个相等的两个实数根”是解题的关键.
7、B
【解析】
∵点,是中点
∴点坐标
∵在双曲线上,代入可得
∴
∵点在直角边上,而直线边与轴垂直
∴点的横坐标为-6
又∵点在双曲线
∴点坐标为
∴
从而,故选B
8、B
【解析】
∵四边形AECD是平行四边形,
∴AE=CD,
∵AB=BE=CD=3,
∴AB=BE=AE,
∴△ABE是等边三角形,
∴∠B=60°,
∴的弧长=.
故选B.
9、C
【解析】
设参加酒会的人数为x人,根据每两人都只碰一次杯,如果一共碰杯55次,列出一元二次方程,解之即可得出答案.
【详解】
设参加酒会的人数为x人,依题可得:
x(x-1)=55,
化简得:x2-x-110=0,
解得:x1=11,x2=-10(舍去),
故答案为C.
【点睛】
考查了一元二次方程的应用,解题的关键是根据题中的等量关系列出方程.
10、B
【解析】
设大马有匹,小马有匹,根据题意可得等量关系:大马数+小马数=100,大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程即可.
【详解】
解:设大马有匹,小马有匹,由题意得:
,
故选:B.
【点睛】
本题主要考查的是由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、π﹣1.
【解析】
连接CD,作DM⊥BC,DN⊥AC,证明△DMG≌△DNH,则S四边形DGCH=S四边形DMCN,求得扇形FDE的面积,则阴影部分的面积即可求得.
【详解】
连接CD,作DM⊥BC,DN⊥AC.
∵CA=CB,∠ACB=90°,点D为AB的中点,∴DC=AB=1,四边形DMCN是正方形,DM=.
则扇形FDE的面积是:=π.
∵CA=CB,∠ACB=90°,点D为AB的中点,∴CD平分∠BCA.
又∵DM⊥BC,DN⊥AC,∴DM=DN.
∵∠GDH=∠MDN=90°,∴∠GDM=∠HDN.在△DMG和△DNH中,∵,∴△DMG≌△DNH(AAS),∴S四边形DGCH=S四边形DMCN=1.
则阴影部分的面积是:π﹣1.
故答案为π﹣1.
【点睛】
本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明△DMG≌△DNH,得到S四边形DGCH=S四边形DMCN是关键.
12、
【解析】
利用三角形中位线的性质定理以及相似三角形的性质即可解决问题;
【详解】
∵AE=EC,BD=CD,
∴DE∥AB,DE=AB,
∴△EDC∽△ABC,
∴=,
故答案是:.
【点睛】
考查相似三角形的判定和性质、三角形中位线定理等知识,解题的关键是熟练掌握三角形中位线定理.
13、300
【解析】
设成本为x元,标价为y元,根据已知条件可列二元一次方程组即可解出定价.
【详解】
设成本为x元,标价为y元,依题意得,解得
故定价为300元.
【点睛】
此题主要考查二元一次方程组的应用,解题的关键是根据题意列出方程再求解.
14、 (-5,4)
【解析】
试题解析:由于图形平移过程中,对应点的平移规律相同,
由点A到点A'可知,点的横坐标减6,纵坐标加3,
故点B'的坐标为 即
故答案为:
15、4n+1
【解析】
分析可知规律是每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个.
【详解】
解:第一个图案正三角形个数为6=1+4;
第二个图案正三角形个数为1+4+4=1+1×4;
第三个图案正三角形个数为1+1×4+4=1+3×4;
…;
第n个图案正三角形个数为1+(n﹣1)×4+4=1+4n=4n+1.
故答案为4n+1.
考点:规律型:图形的变化类.
16、a(4a+b)(4a﹣b)
【解析】
首先提取公因式a,再利用平方差公式分解因式得出答案.
【详解】
解:16a3-ab2
=a(16a2-b2)
=a(4a+b)(4a-b).
故答案为:a(4a+b)(4a-b).
【点睛】
此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.
三、解答题(共8题,共72分)
17、(1)∠D=32°;(2)①BE=;②
【解析】
(Ⅰ)连接OC, CD为切线,根据切线的性质可得∠OCD=90°,根据圆周角定理可得∠AOC=2∠ABC=29°×2=58°,根据直角三角形的性质可得∠D的大小.
(Ⅱ)①根据∠D=30°,得到∠DOC=60°,根据∠BAO=15°,可以得出∠AOB=150°,进而证明△OBC为等腰直角三角形,根据等腰直角三角形的性质得出
根据圆周角定理得出根据含角的直角三角形的性质即可求出BE的长;
②根据四边形ABCD的面积=S△OBC+S△OCD﹣S△OAB进行计算即可.
【详解】
(Ⅰ)连接OC,
∵CD为切线,
∴OC⊥CD,
∴∠OCD=90°,
∵∠AOC=2∠ABC=29°×2=58°,
∴∠D=90°﹣58°=32°;
(Ⅱ)①连接OB,
在Rt△OCD中,∵∠D=30°,
∴∠DOC=60°,
∵∠BAO=15°,
∴∠OBA=15°,
∴∠AOB=150°,
∴∠OBC=150°﹣60°=90°,
∴△OBC为等腰直角三角形,
∴
∵
在Rt△CBE中,
∴
②作BH⊥OA于H,如图,
∵∠BOH=180°﹣∠AOB=30°,
∴
∴四边形ABCD的面积=S△OBC+S△OCD﹣S△OAB
【点睛】
考查切线的性质,圆周角定理,等腰直角三角形的判定与性质,含角的等腰直角三角形的性质,三角形的面积公式等,题目比较典型,综合性比较强,难度适中.
18、(1)应安排4天进行精加工,8天进行粗加工
(2)①=
②安排1天进行精加工,9天进行粗加工,可以获得最多利润为元
【解析】
解:(1)设应安排天进行精加工,天进行粗加工,
根据题意得
解得
答:应安排4天进行精加工,8天进行粗加工.
(2)①精加工吨,则粗加工()吨,根据题意得
=
②要求在不超过10天的时间内将所有蔬菜加工完,
解得
又在一次函数中,,
随的增大而增大,
当时,
精加工天数为=1,
粗加工天数为
安排1天进行精加工,9天进行粗加工,可以获得最多利润为元.
19、12
【解析】
解:∵,∴.
∴.
将代数式应用完全平方公式和平方差公式展开后合并同类项,将整体代入求值.
20、(1)证明见解析;(2)证明见解析;(3).
【解析】
试题分析:(1)由AC∥EG,推出∠G=∠ACG,由AB⊥CD推出,推出∠CEF=∠ACD,推出∠G=∠CEF,由此即可证明;
(2)欲证明EG是⊙O的切线只要证明EG⊥OE即可;
(3)连接OC.设⊙O的半径为r.在Rt△OCH中,利用勾股定理求出r,证明△AHC∽△MEO,可得,由此即可解决问题;
试题解析:(1)证明:如图1.∵AC∥EG,∴∠G=∠ACG,∵AB⊥CD,∴,∴∠CEF=∠ACD,∴∠G=∠CEF,∵∠ECF=∠ECG,∴△ECF∽△GCE.
(2)证明:如图2中,连接OE.∵GF=GE,∴∠GFE=∠GEF=∠AFH,∵OA=OE,∴∠OAE=∠OEA,∵∠AFH+∠FAH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切线.
(3)解:如图3中,连接OC.设⊙O的半径为r.
在Rt△AHC中,tan∠ACH=tan∠G==,∵AH=,∴HC=,在Rt△HOC中,∵OC=r,OH=r﹣,HC=,∴,∴r=,∵GM∥AC,∴∠CAH=∠M,∵∠OEM=∠AHC,∴△AHC∽△MEO,∴,∴,∴EM=.
点睛:本题考查圆综合题、垂径定理、相似三角形的判定和性质、锐角三角函数、勾股定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,正确寻找相似三角形,构建方程解决问题吗,属于中考压轴题.
21、见详解
【解析】
根据角平分线的定义可得∠ABD=∠CBD,然后利用“边角边”证明△ABD和△CBD全等,根据全等三角形对应角相等可得∠ADB=∠CDB,然后根据角平分线上的点到角的两边的距离相等证明即可.
【详解】
证明:∵BD为∠ABC的平分线,
∴∠ABD=∠CBD,
在△ABD和△CBD中,
∴△ABD≌△CBD(SAS),
∴∠ADB=∠CDB,
∵点P在BD上,PM⊥AD,PN⊥CD,
∴PM=PN.
【点睛】
本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,确定出全等三角形并得到∠ADB=∠CDB是解题的关键.
22、(1)y关于x的函数解析式为;(2)恒温系统设定恒温为20°C;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.
【解析】
分析:(1)应用待定系数法分段求函数解析式;
(2)观察图象可得;
(3)代入临界值y=10即可.
详解:(1)设线段AB解析式为y=k1x+b(k≠0)
∵线段AB过点(0,10),(2,14)
代入得
解得
∴AB解析式为:y=2x+10(0≤x<5)
∵B在线段AB上当x=5时,y=20
∴B坐标为(5,20)
∴线段BC的解析式为:y=20(5≤x<10)
设双曲线CD解析式为:y=(k2≠0)
∵C(10,20)
∴k2=200
∴双曲线CD解析式为:y=(10≤x≤24)
∴y关于x的函数解析式为:
(2)由(1)恒温系统设定恒温为20°C
(3)把y=10代入y=中,解得,x=20
∴20-10=10
答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害.
点睛:本题为实际应用背景的函数综合题,考查求得一次函数、反比例函数和常函数关系式.解答时应注意临界点的应用.
23、(1)见解析(2)
【解析】
试题分析:(1)利用平行四边形的性质和菱形的性质即可判定四边形AECF是菱形;
(2)连接EF交于点O,运用解直角三角形的知识点,可以求得AC与EF的长,再利用菱形的面积公式即可求得菱形AECF的面积.
试题解析:(1)证明:∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC.
在Rt△ABC中,∠BAC=90°,点E是BC边的中点,
∴AE=CE=BC.
同理,AF=CF=AD.
∴AF=CE.
∴四边形AECF是平行四边形.
∴平行四边形AECF是菱形.
(2)解:在Rt△ABC中,∠BAC=90°,∠B=30°,BC=10,
∴AC=5,AB=.
连接EF交于点O,
∴AC⊥EF于点O,点O是AC中点.
∴OE=.
∴EF=.
∴菱形AECF的面积是AC·EF=.
考点:1.菱形的性质和面积;2.平行四边形的性质;3.解直角三角形.
24、原不等式组的解集为﹣4<x≤1,在数轴上表示见解析.
【解析】
分析:根据解一元一次不等式组的步骤,大小小大中间找,可得答案
详解:解不等式①,得x>﹣4,
解不等式②,得x≤1,
把不等式①②的解集在数轴上表示如图
,
原不等式组的解集为﹣4<x≤1.
点睛:本题考查了解一元一次不等式组,利用不等式组的解集的表示方法是解题关键.
重庆市新店重点达标名校2022年中考数学猜题卷含解析: 这是一份重庆市新店重点达标名校2022年中考数学猜题卷含解析,共20页。试卷主要包含了﹣2的绝对值是等内容,欢迎下载使用。
山东省菏泽市定陶县重点达标名校2021-2022学年中考猜题数学试卷含解析: 这是一份山东省菏泽市定陶县重点达标名校2021-2022学年中考猜题数学试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列方程中,没有实数根的是,二次函数y=3,《九章算术》中有这样一个问题等内容,欢迎下载使用。
安徽安庆重点达标名校2021-2022学年中考数学猜题卷含解析: 这是一份安徽安庆重点达标名校2021-2022学年中考数学猜题卷含解析,共24页。试卷主要包含了答题时请按要求用笔,已知二次函数y=,在一组数据等内容,欢迎下载使用。