所属成套资源:新人教a版数学选择性必修第一册练习整册
高中数学人教A版 (2019)选择性必修 第一册2.3 直线的交点坐标与距离公式课后练习题
展开
这是一份高中数学人教A版 (2019)选择性必修 第一册2.3 直线的交点坐标与距离公式课后练习题,共5页。试卷主要包含了两条直线l1等内容,欢迎下载使用。
课时跟踪检测(十二) 直线的两点式方程1.若直线l的横截距与纵截距都是负数,则( )A.l的倾斜角为锐角且不过第二象限B.l的倾斜角为钝角且不过第一象限C.l的倾斜角为锐角且不过第四象限D.l的倾斜角为钝角且不过第三象限解析:选B 依题意知,直线l的截距式方程为+=1(a>0,b>0),显然直线l只能过第二、三、四象限,而不会过第一象限,且倾斜角为钝角,故选B.2.经过点(0,-2),且在两坐标轴上的截距和为2的直线方程是( )A.+=1 B.+=1C.+=1 D.-=1解析:选D 设直线在x轴上的截距设为a,由题意知直线在y轴上的截距为-2,所以-2+a=2,a=4.故直线方程为-=1.3.已知△ABC三顶点A(1,2),B(3,6),C(5,2),M为AB中点,N为AC中点,则中位线MN所在直线方程为( )A.2x+y-8=0 B.2x-y+8=0C.2x+y-12=0 D.2x-y-12=0解析:选A 点M的坐标为(2,4),点N的坐标为(3,2),由两点式方程得=,即2x+y-8=0.4.两条直线l1:-=1和l2:-=1在同一直角坐标系中的图象可以是( )解析:选A 两条直线化为截距式分别为+=1,+=1.假定l1,判断a,b,确定l2的位置,知A项符合.5.过P(4,-3)且在坐标轴上截距相等的直线有( )A.1条 B.2条C.3条 D.4条解析:选B 当直线过原点时显然符合条件,当直线不过原点时,设直线与坐标轴的交点为(a,0),(0,a),a≠0,则直线方程为+=1,把点P(4,-3)的坐标代入方程得a=1.所以所求直线有两条.6.在x轴和y轴上的截距分别为-2,3的直线方程是____________.解析:由直线的截距式方程可得+=1.答案:+=17.已知直线+=1与坐标轴围成的图形面积为6,则a的值为________.解析:由+=1知S=|a|·|6|=6,所以a=±2.答案:±28.已知点A(3,2),B(-1,4),则经过点C(2,5)且经过线段AB的中点的直线方程为________.解析:AB的中点坐标为(1,3),由直线的两点式方程可得=,即2x-y+1=0.答案:2x-y+1=09.已知直线l在x轴上的截距比在y轴上的截距大1,且过点(6,-2),求直线l的方程.解:法一:设直线l的截距式方程为+=1,把点(6,-2)代入得-=1,化简整理得a2-3a+2=0,解得a=2或a=1,故直线l的方程为+=1或+y=1.法二:设直线l的点斜式方程为y+2=k(x-6)(k≠0).令x=0,得y=-6k-2;令y=0,得x=+6.于是-(-6k-2)=1,解得k1=-或k2=-.故直线l的方程为y+2=-(x-6)或y+2=-(x-6),即y=-x+2或y=-x+1.10.三角形的顶点坐标为A(0,-5),B(-3,3),C(2,0),求直线AB和直线AC的方程.解:∵直线AB过点A(0,-5),B(-3,3)两点,由两点式方程,得=.整理,得8x+3y+15=0.∴直线AB的方程为8x+3y+15=0.又∵直线AC过A(0,-5),C(2,0)两点,由截距式得+=1,整理得5x-2y-10=0,∴直线AC的方程为5x-2y-10=0.1.已知A,B两点分别在两条互相垂直的直线y=2x和x+ay=0上,且线段AB的中点为P,则直线AB的方程为( )A.y=-x+5 B.y=x-5C.y=x+5 D.y=-x-5解析:选C 依题意,a=2,P(0,5).设A(x0,2x0),B(-2y0,y0),则由中点坐标公式,得解得所以A(4,8),B(-4,2). 由直线的两点式方程,得直线AB的方程是=,即y=x+5.2.若直线l经过点A(1,2),在x轴上的截距的取值范围是(-3,3),则其斜率的取值范围是( )A.B.∪(1,+∞)C.∪D.∪ 解析:选D 设直线的斜率为k,如图,过定点A的直线经过点B时,直线l在x轴上的截距为3,此时k=-1;过定点A的直线经过点C时,直线l在x轴上的截距为-3,此时k=,所以满足条件的直线l的斜率的取值范围是(-∞,-1)∪.3.若直线l:+=1(a>0,b>0)经过点(1,2),则直线l在x轴和y轴上的截距之和的最小值是________.解析:由直线经过点(1,2)得+=1.于是a+b=(a+b)×=3++,因为+≥2=2,当且仅当=,即a=1+,b=2+时取等号,所以a+b≥3+2.答案:3+24.已知在△ABC中,A,B的坐标分别为(-1,2),(4,3),AC的中点M在y轴上,BC的中点N在x轴上.(1)求点C的坐标;(2)求直线MN的方程.解:(1)设点C(m,n),AC中点M在y轴上,BC的中点N在x轴上,由中点坐标公式得解得∴点C的坐标为(1,-3).(2)由(1)可得M,N,由直线方程的截距式,得直线MN的方程是+=1,即y=x-.5.一条光线从点A(3,2)发出,经x轴反射后,通过点B(-1,6),求入射光线和反射光线所在的直线方程.解:如图所示,作A点关于x轴的对称点A′,显然,A′坐标为(3,-2),连接A′B,则A′B所在直线即为反射光线.由两点式可得直线A′B的方程为=,即2x+y-4=0.同理,点B关于x轴的对称点为B′(-1,-6),连接AB′,则AB′所在直线即为入射光线.由两点式可得直线AB′的方程为=,即2x-y-4=0,∴入射光线所在直线方程为2x-y-4=0,反射光线所在直线方程为2x+y-4=0.
相关试卷
这是一份数学选择性必修 第一册2.2 直线的方程课后作业题,共4页。
这是一份高中数学人教A版 (2019)选择性必修 第一册2.2 直线的方程一课一练,共7页。试卷主要包含了已知△ABC的顶点A,B,C.等内容,欢迎下载使用。
这是一份人教A版 (2019)选择性必修 第一册2.2 直线的方程当堂检测题,共4页。试卷主要包含了两直线l1等内容,欢迎下载使用。