终身会员
搜索
    上传资料 赚现金

    湖南省武冈市市级名校2021-2022学年中考数学最后一模试卷含解析

    立即下载
    加入资料篮
    湖南省武冈市市级名校2021-2022学年中考数学最后一模试卷含解析第1页
    湖南省武冈市市级名校2021-2022学年中考数学最后一模试卷含解析第2页
    湖南省武冈市市级名校2021-2022学年中考数学最后一模试卷含解析第3页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖南省武冈市市级名校2021-2022学年中考数学最后一模试卷含解析

    展开

    这是一份湖南省武冈市市级名校2021-2022学年中考数学最后一模试卷含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号,下列命题是真命题的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(共10小题,每小题3分,共30分)
    1.某班体育委员对本班学生一周锻炼(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是( )

    A.10 B.11 C.12 D.13
    2.对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是( )
    A.∠α=60°,∠α的补角∠β=120°,∠β>∠α
    B.∠α=90°,∠α的补角∠β=90°,∠β=∠α
    C.∠α=100°,∠α的补角∠β=80°,∠β<∠α
    D.两个角互为邻补角
    3.等式成立的x的取值范围在数轴上可表示为(  )
    A. B. C. D.
    4.如图,E为平行四边形ABCD的边AB延长线上的一点,且BE:AB=2:3,△BEF的面积为4,则平行四边形ABCD的面积为() 

    A.30 B.27 C.14 D.32
    5.若0<m<2,则关于x的一元二次方程﹣(x+m)(x+3m)=3mx+37根的情况是(  )
    A.无实数根
    B.有两个正根
    C.有两个根,且都大于﹣3m
    D.有两个根,其中一根大于﹣m
    6.关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为( )
    A.14 B.7 C.﹣2 D.2
    7.某种计算器标价240元,若以8折优惠销售,仍可获利20%,那么这种计算器的进价为(  )
    A.152元 B.156元 C.160元 D.190元
    8.如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E;B、E是半圆弧的三等分点,的长为,则图中阴影部分的面积为(  )

    A. B. C. D.
    9.如图,在△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=24°,则∠BDC的度数为(  )

    A.42° B.66° C.69° D.77°
    10.下列命题是真命题的是(  )
    A.如果a+b=0,那么a=b=0 B.的平方根是±4
    C.有公共顶点的两个角是对顶角 D.等腰三角形两底角相等
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.若是关于的完全平方式,则__________.
    12.a(a+b)﹣b(a+b)=_____.
    13.21世纪纳米技术将被广泛应用.纳米是长度的度量单位,1纳米=0.000000001米,则12纳米用科学记数法表示为_______米.
    14.已知直角三角形的两边长分别为3、1.则第三边长为________.
    15.如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF=__.

    16.一个凸边形的内角和为720°,则这个多边形的边数是__________________
    三、解答题(共8题,共72分)
    17.(8分)甲乙两件服装的进价共500元,商场决定将甲服装按30%的利润定价,乙服装按20%的利润定价,实际出售时,两件服装均按9折出售,商场卖出这两件服装共获利67元.求甲乙两件服装的进价各是多少元;由于乙服装畅销,制衣厂经过两次上调价格后,使乙服装每件的进价达到242元,求每件乙服装进价的平均增长率;若每件乙服装进价按平均增长率再次上调,商场仍按9折出售,定价至少为多少元时,乙服装才可获得利润(定价取整数).
    18.(8分)如图,在△ABC中,
    (1)求作:∠BAD=∠C,AD交BC于D.(用尺规作图法,保留作图痕迹,不要求写作法).
    (2)在(1)条件下,求证:AB2=BD•BC.

    19.(8分)如图,⊙O的直径AD长为6,AB是弦,CD∥AB,∠A=30°,且CD=.
    (1)求∠C的度数;
    (2)求证:BC是⊙O的切线.

    20.(8分)如图,在中,,点是上一点.尺规作图:作,使与、都相切.(不写作法与证明,保留作图痕迹)若与相切于点D,与的另一个交点为点,连接、,求证:.

    21.(8分)已知关于x的方程x2﹣6mx+9m2﹣9=1.
    (1)求证:此方程有两个不相等的实数根;
    (2)若此方程的两个根分别为x1,x2,其中x1>x2,若x1=2x2,求m的值.
    22.(10分)一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,求海警船到大事故船C处所需的大约时间.(温馨提示:sin53°≈0.8,cos53°≈0.6)

    23.(12分)如图,以AB边为直径的⊙O经过点P,C是⊙O上一点,连结PC交AB于点E,且∠ACP=60°,PA=PD.试判断PD与⊙O的位置关系,并说明理由;若点C是弧AB的中点,已知AB=4,求CE•CP的值.

    24.如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象交于第二、四象限内的A、B两点,与x轴交于点C,点A(﹣2,3),点B(6,n).
    (1)求该反比例函数和一次函数的解析式;
    (2)求△AOB的面积;
    (3)若M(x1,y1),N(x2,y2)是反比例函数y=(m≠0)的图象上的两点,且x1<x2,y1<y2,指出点M、N各位于哪个象限.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    根据统计图中的数据可以求得本班的学生数,从而可以求得该班这些学生一周锻炼时间的中位数,本题得以解决.
    【详解】
    由统计图可得,
    本班学生有:6+9+10+8+7=40(人),
    该班这些学生一周锻炼时间的中位数是:11,
    故选B.
    【点睛】
    本题考查折线统计图、中位数,解答本题的关键是明确题意,会求一组数据的中位数.
    2、C
    【解析】
    熟记反证法的步骤,然后进行判断即可.
    解答:解:举反例应该是证明原命题不正确,即要举出不符合叙述的情况;
    A、∠α的补角∠β>∠α,符合假命题的结论,故A错误;
    B、∠α的补角∠β=∠α,符合假命题的结论,故B错误;
    C、∠α的补角∠β<∠α,与假命题结论相反,故C正确;
    D、由于无法说明两角具体的大小关系,故D错误.
    故选C.
    3、B
    【解析】
    根据二次根式有意义的条件即可求出的范围.
    【详解】
    由题意可知: ,
    解得:,
    故选:.
    【点睛】
    考查二次根式的意义,解题的关键是熟练运用二次根式有意义的条件.
    4、A
    【解析】
    ∵四边形ABCD是平行四边形,
    ∴AB//CD,AB=CD,AD//BC,
    ∴△BEF∽△CDF,△BEF∽△AED,
    ∴ ,
    ∵BE:AB=2:3,AE=AB+BE,
    ∴BE:CD=2:3,BE:AE=2:5,
    ∴ ,
    ∵S△BEF=4,
    ∴S△CDF=9,S△AED=25,
    ∴S四边形ABFD=S△AED-S△BEF=25-4=21,
    ∴S平行四边形ABCD=S△CDF+S四边形ABFD=9+21=30,
    故选A.
    【点睛】本题考查了平行四边形的性质,相似三角形的判定与性质等,熟记相似三角形的面积等于相似比的平方是解题的关键.
    5、A
    【解析】
    先整理为一般形式,用含m的式子表示出根的判别式△,再结合已知条件判断△的取值范围即可.
    【详解】
    方程整理为,
    △,
    ∵,
    ∴,
    ∴△,
    ∴方程没有实数根,
    故选A.
    【点睛】
    本题考查了一元二次方程根的判别式,当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
    6、D
    【解析】
    解不等式得到x≥m+3,再列出关于m的不等式求解.
    【详解】
    ≤﹣1,
    m﹣1x≤﹣6,
    ﹣1x≤﹣m﹣6,
    x≥m+3,
    ∵关于x的一元一次不等式≤﹣1的解集为x≥4,
    ∴m+3=4,解得m=1.
    故选D.
    考点:不等式的解集
    7、C
    【解析】
    【分析】设进价为x元,依题意得240×0.8-x=20x℅,解方程可得.
    【详解】设进价为x元,依题意得
    240×0.8-x=20x℅
    解得x=160
    所以,进价为160元.
    故选C
    【点睛】本题考核知识点:列方程解应用题. 解题关键点:找出相等关系.
    8、D
    【解析】
    连接BD,BE,BO,EO,先根据B、E是半圆弧的三等分点求出圆心角∠BOD的度数,再利用弧长公式求出半圆的半径R,再利用圆周角定理求出各边长,通过转化将阴影部分的面积转化为S△ABC﹣S扇形BOE,然后分别求出面积相减即可得出答案.
    【详解】
    解:连接BD,BE,BO,EO,

    ∵B,E是半圆弧的三等分点,
    ∴∠EOA=∠EOB=∠BOD=60°,
    ∴∠BAD=∠EBA=30°,
    ∴BE∥AD,
    ∵ 的长为 ,

    解得:R=4,
    ∴AB=ADcos30°= ,
    ∴BC=AB=,
    ∴AC=BC=6,
    ∴S△ABC=×BC×AC=××6=,
    ∵△BOE和△ABE同底等高,
    ∴△BOE和△ABE面积相等,
    ∴图中阴影部分的面积为:S△ABC﹣S扇形BOE=
    故选:D.
    【点睛】
    本题主要考查弧长公式,扇形面积公式,圆周角定理等,掌握圆的相关性质是解题的关键.
    9、C
    【解析】
    在△ABC中,∠ACB=90°,∠A=24°,
    ∴∠B=90°-∠A=66°.
    由折叠的性质可得:∠BCD=∠ACB=45°,
    ∴∠BDC=180°-∠BCD-∠B=69°.
    故选C.
    10、D
    【解析】
    解:A、如果a+b=0,那么a=b=0,或a=﹣b,错误,为假命题;
    B、=4的平方根是±2,错误,为假命题;
    C、有公共顶点且相等的两个角是对顶角,错误,为假命题;
    D、等腰三角形两底角相等,正确,为真命题;
    故选D.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、1或-1
    【解析】
    【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.
    详解:∵x2+2(m-3)x+16是关于x的完全平方式,
    ∴2(m-3)=±8,
    解得:m=-1或1,
    故答案为-1或1.
    点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.
    12、(a+b)(a﹣b).
    【解析】
    先确定公因式为(a+b),然后提取公因式后整理即可.
    【详解】
    a(a+b)﹣b(a+b)=(a+b)(a﹣b).
    【点睛】
    本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.
    13、1.2×10﹣1.
    【解析】
    绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    【详解】
    解:12纳米=12×0.000000001米=1.2×10−1米.
    故答案为1.2×10−1.
    【点睛】
    本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
    14、4或
    【解析】
    试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:
    ①长为3的边是直角边,长为3的边是斜边时:第三边的长为:;
    ②长为3、3的边都是直角边时:第三边的长为:;
    ∴第三边的长为:或4.
    考点:3.勾股定理;4.分类思想的应用.
    15、15°
    【解析】
    根据平行四边形的性质和圆的半径相等得到△AOB为等边三角形,根据等腰三角形的三线合一得到∠BOF=∠AOF=30°,根据圆周角定理计算即可.
    【详解】
    解答:

    连接OB,
    ∵四边形ABCO是平行四边形,∴OC=AB,又OA=OB=OC,
    ∴OA=OB=AB,∴△AOB为等边三角形.
    ∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°.
    由圆周角定理得 ,
    故答案为15°.
    16、1
    【解析】
    设这个多边形的边数是n,根据多边形的内角和公式:,列方程计算即可.
    【详解】
    解:设这个多边形的边数是n
    根据多边形内角和公式可得
    解得.
    故答案为:1.
    【点睛】
    此题考查的是根据多边形的内角和,求边数,掌握多边形内角和公式是解决此题的关键.

    三、解答题(共8题,共72分)
    17、(1)甲服装的进价为300元、乙服装的进价为1元.(2)每件乙服装进价的平均增长率为10%;(3)乙服装的定价至少为296元.
    【解析】
    (1)若设甲服装的成本为x元,则乙服装的成本为(500-x)元.根据公式:总利润=总售价-总进价,即可列出方程.
    (2)利用乙服装的成本为1元,经过两次上调价格后,使乙服装每件的进价达到242元,利用增长率公式求出即可;
    (3)利用每件乙服装进价按平均增长率再次上调,再次上调价格为:242×(1+10%)=266.2(元),进而利用不等式求出即可.
    【详解】
    (1)设甲服装的成本为x元,则乙服装的成本为(500-x)元,
    根据题意得:90%•(1+30%)x+90%•(1+20%)(500-x)-500=67,
    解得:x=300,
    500-x=1.
    答:甲服装的成本为300元、乙服装的成本为1元.
    (2)∵乙服装的成本为1元,经过两次上调价格后,使乙服装每件的进价达到242元,
    ∴设每件乙服装进价的平均增长率为y,
    则,
    解得:=0.1=10%,=-2.1(不合题意,舍去).
    答:每件乙服装进价的平均增长率为10%;
    (3)∵每件乙服装进价按平均增长率再次上调
    ∴再次上调价格为:242×(1+10%)=266.2(元)
    ∵商场仍按9折出售,设定价为a元时
    0.9a-266.2>0
    解得:a>
    故定价至少为296元时,乙服装才可获得利润.
    考点:一元二次方程的应用,不等式的应用,打折销售问题
    18、(1)作图见解析;(2)证明见解析;
    【解析】
    (1)①以C为圆心,任意长为半径画弧,交CB、CA于E、F;②以A为圆心,CE长为半径画弧,交AB于G;③以G为圆心,EF长为半径画弧,两弧交于H;④连接AH并延长交BC于D,则∠BAD=∠C;(2)证明△ABD∽△CBA,然后根据相似三角形的性质得到结论.
    【详解】
    (1)如图,∠BAD为所作;

    (2)∵∠BAD=∠C,∠B=∠B
    ∴△ABD∽△CBA,
    ∴AB:BC=BD:AB,
    ∴AB2=BD•BC.
    【点睛】
    本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线; 过一点作已知直线的垂线).也考查了相似三角形的判定与性质.
    19、(1)60°;(2)见解析
    【解析】
    (1)连接BD,由AD为圆的直径,得到∠ABD为直角,再利用30度角所对的直角边等于斜边的一半求出BD的长,根据CD与AB平行,得到一对内错角相等,确定出∠CDB为直角,在直角三角形BCD中,利用锐角三角函数定义求出tanC的值,即可确定出∠C的度数;
    (2)连接OB,由OA=OB,利用等边对等角得到一对角相等,再由CD与AB平行,得到一对同旁内角互补,求出∠ABC度数,由∠ABC﹣∠ABO度数确定出∠OBC度数为90,即可得证;
    【详解】
    (1)如图,连接BD,

    ∵AD为圆O的直径,
    ∴∠ABD=90°,
    ∴BD=AD=3,
    ∵CD∥AB,∠ABD=90°,
    ∴∠CDB=∠ABD=90°,
    在Rt△CDB中,tanC=,
    ∴∠C=60°;
    (2)连接OB,
    ∵∠A=30°,OA=OB,
    ∴∠OBA=∠A=30°,
    ∵CD∥AB,∠C=60°,
    ∴∠ABC=180°﹣∠C=120°,
    ∴∠OBC=∠ABC﹣∠ABO=120°﹣30°=90°,
    ∴OB⊥BC,
    ∴BC为圆O的切线.
    【点睛】
    此题考查了切线的判定,熟练掌握性质及定理是解本题的关键.
    20、(1)详见解析;(2)详见解析.
    【解析】
    (1)利用角平分线的性质作出∠BAC的角平分线,利用角平分线上的点到角的两边距离相等得出O点位置,进而得出答案.
    (2)根据切线的性质,圆周角的性质,由相似判定可证△CDB∽△DEB,再根据相似三角形的性质即可求解.
    【详解】
    解:(1)如图,及为所求.

    (2)连接.
    ∵是的切线,
    ∴,
    ∴,
    即,
    ∵是直径,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,

    ∴∽

    ∴.
    【点睛】
    本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作是解决此类题目的关键.
    21、 (1)见解析;(2)m=2
    【解析】
    (1)根据一元二次方程根的判别式进行分析解答即可;
    (2)用“因式分解法”解原方程,求得其两根,再结合已知条件分析解答即可.
    【详解】
    (1)∵在方程x2﹣6mx+9m2﹣9=1中,△=(﹣6m)2﹣4(9m2﹣9)=26m2﹣26m2+26=26>1.
    ∴方程有两个不相等的实数根;
    (2)关于x的方程:x2﹣6mx+9m2﹣9=1可化为:[x﹣(2m+2)][x﹣(2m﹣2)]=1,
    解得:x=2m+2和x=2m-2,
    ∵2m+2>2m﹣2,x1>x2,
    ∴x1=2m+2,x2=2m﹣2,
    又∵x1=2x2,
    ∴2m+2=2(2m﹣2)解得:m=2.
    【点睛】
    (1)熟知“一元二次方程根的判别式:在一元二次方程中,当时,原方程有两个不相等的实数根,当时,原方程有两个相等的实数根,当时,原方程没有实数根”是解答第1小题的关键;(2)能用“因式分解法”求得关于x的方程x2﹣6mx+9m2﹣9=1的两个根是解答第2小题的关键.
    22、小时
    【解析】
    过点C作CD⊥AB交AB延长线于D.先解Rt△ACD得出CD=AC=40海里,再解Rt△CBD中,得出BC=≈50,然后根据时间=路程÷速度即可求出海警船到大事故船C处所需的时间.
    【详解】
    解:如图,过点C作CD⊥AB交AB延长线于D.
    在Rt△ACD中,∵∠ADC=90°,∠CAD=30°,AC=80海里,
    ∴CD=AC=40海里.
    在Rt△CBD中,∵∠CDB=90°,∠CBD=90°﹣37°=53°,
    ∴BC=≈=50(海里),
    ∴海警船到大事故船C处所需的时间大约为:50÷40=(小时).

    考点:解直角三角形的应用-方向角问题
    23、(1)PD是⊙O的切线.证明见解析.(2)1.
    【解析】
    试题分析:(1)连结OP,根据圆周角定理可得∠AOP=2∠ACP=120°,然后计算出∠PAD和∠D的度数,进而可得∠OPD=90°,从而证明PD是⊙O的切线;
    (2)连结BC,首先求出∠CAB=∠ABC=∠APC=45°,然后可得AC长,再证明△CAE∽△CPA,进而可得,然后可得CE•CP的值.
    试题解析:(1)如图,PD是⊙O的切线.
    证明如下:
    连结OP,∵∠ACP=60°,∴∠AOP=120°,∵OA=OP,∴∠OAP=∠OPA=30°,∵PA=PD,∴∠PAO=∠D=30°,∴∠OPD=90°,∴PD是⊙O的切线.
    (2)连结BC,∵AB是⊙O的直径,∴∠ACB=90°,又∵C为弧AB的中点,∴∠CAB=∠ABC=∠APC=45°,∵AB=4,AC=Absin45°=.∵∠C=∠C,∠CAB=∠APC,∴△CAE∽△CPA,∴,∴CP•CE=CA2=()2=1.

    考点:相似三角形的判定与性质;圆心角、弧、弦的关系;直线与圆的位置关系;探究型.
    24、 (1)反比例函数的解析式为y=﹣;一次函数的解析式为y=﹣x+2;(2)8;(3)点M、N在第二象限,或点M、N在第四象限.
    【解析】
    (1)把A(﹣2,3)代入y=,可得m=﹣2×3=﹣6,
    ∴反比例函数的解析式为y=﹣;
    把点B(6,n)代入,可得n=﹣1,
    ∴B(6,﹣1).
    把A(﹣2,3),B(6,﹣1)代入y=kx+b,可得,
    解得,
    ∴一次函数的解析式为y=﹣x+2;
    (2)∵y=﹣x+2,令y=0,则x=4,
    ∴C(4,0),即OC=4,
    ∴△AOB的面积=×4×(3+1)=8;
    (3)∵反比例函数y=﹣的图象位于二、四象限,
    ∴在每个象限内,y随x的增大而增大,
    ∵x1<x2,y1<y2,
    ∴M,N在相同的象限,
    ∴点M、N在第二象限,或点M、N在第四象限.
    【点睛】
    本题考查了反比例函数与一次函数的交点问题,求三角形的面积,求函数的解析式,正确掌握反比例函数的性质是解题的关键.

    相关试卷

    贵州省黔西县市级名校2021-2022学年中考数学最后一模试卷含解析:

    这是一份贵州省黔西县市级名校2021-2022学年中考数学最后一模试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    2022年山东省济南实验市级名校中考数学最后一模试卷含解析:

    这是一份2022年山东省济南实验市级名校中考数学最后一模试卷含解析,共21页。试卷主要包含了若点A,﹣2018的相反数是,下列运算正确的是等内容,欢迎下载使用。

    2022年湖南省武冈市市级名校中考三模数学试题含解析:

    这是一份2022年湖南省武冈市市级名校中考三模数学试题含解析,共21页。试卷主要包含了二次函数y=ax2+bx+c等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map