2021-2022学年湖南省株洲市市级名校中考数学最后冲刺浓缩精华卷含解析
展开
这是一份2021-2022学年湖南省株洲市市级名校中考数学最后冲刺浓缩精华卷含解析,共19页。试卷主要包含了若一次函数y=等内容,欢迎下载使用。
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.数据”1,2,1,3,1”的众数是( )
A.1 B.1.5 C.1.6 D.3
2.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件作服装仍可获利15元,则这种服装每件的成本是( )
A.120元B.125元C.135元D.140元
3.如图是由5个大小相同的正方体组成的几何体,则该几何体的左视图是( )
A.B.
C.D.
4.将抛物线y=x2先向左平移2个单位,再向下平移3个单位后所得抛物线的解析式为( )
A.y=(x﹣2)2+3 B.y=(x﹣2)2﹣3 C.y=(x+2)2+3 D.y=(x+2)2﹣3
5.下列因式分解正确的是( )
A.B.
C.D.
6.如图,在正方形ABCD中,G为CD边中点,连接AG并延长,分别交对角线BD于点F,交BC边延长线于点E.若FG=2,则AE的长度为( )
A.6B.8
C.10D.12
7.如图,扇形AOB中,OA=2,C为弧AB上的一点,连接AC,BC,如果四边形AOBC为菱形,则图中阴影部分的面积为( )
A.B.C.D.
8.一次函数的图象上有点和点,且,下列叙述正确的是
A.若该函数图象交y轴于正半轴,则
B.该函数图象必经过点
C.无论m为何值,该函数图象一定过第四象限
D.该函数图象向上平移一个单位后,会与x轴正半轴有交点
9.若一次函数y=(2m﹣3)x﹣1+m的图象不经过第三象限,则m的取值范图是( )
A.1<m<B.1≤m<C.1<m≤D.1≤m≤
10.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是( )
A.B.C.D.
二、填空题(共7小题,每小题3分,满分21分)
11.若正六边形的边长为2,则此正六边形的边心距为______.
12.如图,在△ABC中,∠C=∠ABC,BE⊥AC,垂足为点E,△BDE是等边三角形,若AD=4,则线段BE的长为______.
13.如图,在四边形ABCD中,AC、BD是对角线,AC=AD,BC>AB,AB∥CD,AB=4,BD=2,tan∠BAC=3,则线段BC的长是_____.
14.不等式组的解是____.
15.为了节约用水,某市改进居民用水设施,在2017年帮助居民累计节约用水305000吨,将数字305000用科学记数法表示为________.
16.如图,直线a,b被直线c所截,a∥b,∠1=∠2,若∠3=40°,则∠4等于________.
17.正五边形的内角和等于______度.
三、解答题(共7小题,满分69分)
18.(10分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线交AB,BC分别于点M,N,反比例函数的图象经过点M,N.
求反比例函数的解析式;若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.
19.(5分)如图,AB为半圆O的直径,AC是⊙O的一条弦,D为的中点,作DE⊥AC,交AB的延长线于点F,连接DA.求证:EF为半圆O的切线;若DA=DF=6,求阴影区域的面积.(结果保留根号和π)
20.(8分)问题提出
(1).如图 1,在四边形 ABCD 中,AB=BC,AD=CD=3, ∠BAD=∠BCD=90°,∠ADC=60°,则四边形 ABCD 的面积为 _;
问题探究
(2).如图 2,在四边形 ABCD 中,∠BAD=∠BCD=90°,∠ABC=135°,AB=2 2,BC=3,在 AD、CD 上分别找一点 E、F, 使得△BEF 的周长最小,作出图像即可.
21.(10分)把0,1,2三个数字分别写在三张完全相同的不透明卡片的正面上,把这三张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记录下数字.放回后洗匀,再从中抽取一张卡片,记录下数字.请用列表法或树状图法求两次抽取的卡片上的数字都是偶数的概率.
22.(10分)雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.
(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;
(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?
23.(12分)某校团委为研究该校学生的课余活动情况,采取抽样调查的方法,从阅读、运动、娱乐、其他等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制了如下的两幅不完整的统计图,请你根据图中提供的信息解答下列各题:
(1)在这次研究中,一共调查了多少名学生?
(2)“其他”在扇形统计图中所占的圆心角是多少度?
(3)补全频数分布直方图;
(4)该校共有3200名学生,请你估计一下全校大约有多少学生课余爱好是阅读.
24.(14分)某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.求甲、乙两种树苗每棵的价格各是多少元?在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.
【详解】
在这一组数据中1是出现次数最多的,故众数是1.
故选:A.
【点睛】
本题为统计题,考查众数的意义.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
2、B
【解析】
试题分析:通过理解题意可知本题的等量关系,即每件作服装仍可获利=按成本价提高40%后标价,又以8折卖出,根据这两个等量关系,可列出方程,再求解.
解:设这种服装每件的成本是x元,根据题意列方程得:x+15=(x+40%x)×80%
解这个方程得:x=125
则这种服装每件的成本是125元.
故选B.
考点:一元一次方程的应用.
3、B
【解析】
找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.
【详解】
解:从左面看易得下面一层有2个正方形,上面一层左边有1个正方形.
故选:B.
【点睛】
本题考查了三视图的知识,左视图是从物体的左面看得到的视图.
4、D
【解析】
先得到抛物线y=x2的顶点坐标(0,0),再根据点平移的规律得到点(0,0)平移后的对应点的坐标为(-2,-1),然后根据顶点式写出平移后的抛物线解析式.
【详解】
解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)先向左平移2个单位,再向下平移1个单位得到对应点的坐标为(-2,-1),所以平移后的抛物线解析式为y=(x+2)2-1.
故选:D.
【点睛】
本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.
5、C
【解析】
依据因式分解的定义以及提公因式法和公式法,即可得到正确结论.
【详解】
解:D选项中,多项式x2-x+2在实数范围内不能因式分解;
选项B,A中的等式不成立;
选项C中,2x2-2=2(x2-1)=2(x+1)(x-1),正确.
故选C.
【点睛】
本题考查因式分解,解决问题的关键是掌握提公因式法和公式法的方法.
6、D
【解析】
根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出=2,结合FG=2可求出AF、AG的长度,由AD∥BC,DG=CG,可得出AG=GE,即可求出AE=2AG=1.
【详解】
解:∵四边形ABCD为正方形,
∴AB=CD,AB∥CD,
∴∠ABF=∠GDF,∠BAF=∠DGF,
∴△ABF∽△GDF,
∴=2,
∴AF=2GF=4,
∴AG=2.
∵AD∥BC,DG=CG,
∴=1,
∴AG=GE
∴AE=2AG=1.
故选:D.
【点睛】
本题考查了相似三角形的判定与性质、正方形的性质,利用相似三角形的性质求出AF的长度是解题的关键.
7、D
【解析】
连接OC,过点A作AD⊥CD于点D,四边形AOBC是菱形可知OA=AC=2,再由OA=OC可知△AOC是等边三角形,可得∠AOC=∠BOC=60°,故△ACO与△BOC为边长相等的两个等边三角形,再根据锐角三角函数的定义得出AD=OA•sin60°=2×=,因此可求得S阴影=S扇形AOB﹣2S△AOC=﹣2××2×=﹣2.
故选D.
点睛:本题考查的是扇形面积的计算,熟记扇形的面积公式及菱形的性质是解答此题的关键.
8、B
【解析】
利用一次函数的性质逐一进行判断后即可得到正确的结论.
【详解】
解:一次函数的图象与y轴的交点在y轴的正半轴上,则,,若,则,故A错误;
把代入得,,则该函数图象必经过点,故B正确;
当时,,,函数图象过一二三象限,不过第四象限,故C错误;
函数图象向上平移一个单位后,函数变为,所以当时,,故函数图象向上平移一个单位后,会与x轴负半轴有交点,故D错误,
故选B.
【点睛】
本题考查了一次函数图象上点的坐标特征、一次函数图象与几何变换,解题的关键是熟练掌握一次函数的性质,灵活应用这些知识解决问题,属于中考常考题型.
9、B
【解析】
根据一次函数的性质,根据不等式组即可解决问题;
【详解】
∵一次函数y=(2m-3)x-1+m的图象不经过第三象限,
∴,
解得1≤m<.
故选:B.
【点睛】
本题考查一次函数的图象与系数的关系等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.
10、B
【解析】
根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.
【详解】
连接BD,
∵四边形ABCD是菱形,∠A=60°,
∴∠ADC=120°,
∴∠1=∠2=60°,
∴△DAB是等边三角形,
∵AB=2,
∴△ABD的高为,
∵扇形BEF的半径为2,圆心角为60°,
∴∠4+∠5=60°,∠3+∠5=60°,
∴∠3=∠4,
设AD、BE相交于点G,设BF、DC相交于点H,
在△ABG和△DBH中,
,
∴△ABG≌△DBH(ASA),
∴四边形GBHD的面积等于△ABD的面积,
∴图中阴影部分的面积是:S扇形EBF-S△ABD=
=.
故选B.
二、填空题(共7小题,每小题3分,满分21分)
11、.
【解析】
连接OA、OB,根据正六边形的性质求出∠AOB,得出等边三角形OAB,求出OA、AM的长,根据勾股定理求出即可.
【详解】
连接OA、OB、OC、OD、OE、OF,
∵正六边形ABCDEF,
∴∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠AOF,∴∠AOB=60°,OA=OB,
∴△AOB是等边三角形,
∴OA=OB=AB=2,∵AB⊥OM,∴AM=BM=1,
在△OAM中,由勾股定理得:OM=.
12、1
【解析】
本题首先由等边三角形的性质及垂直定义得到∠DBE=60°,∠BEC=90°,再根据等腰三角形的性质可以得出∠EBC=∠ABC-60°=∠C-60°,最后根据三角形内角和定理得出关系式∠C-60°+∠C=90°解出∠C,推出AD=DE,于是得到结论.
【详解】
∵△BDE是正三角形,
∴∠DBE=60°;
∵在△ABC中,∠C=∠ABC,BE⊥AC,
∴∠C=∠ABC=∠ABE+∠EBC,则∠EBC=∠ABC-60°=∠C-60°,∠BEC=90°;
∴∠EBC+∠C=90°,即∠C-60°+∠C=90°,
解得∠C=75°,
∴∠ABC=75°,
∴∠A=30°,
∵∠AED=90°-∠DEB=30°,
∴∠A=∠AED,
∴DE=AD=1,
∴BE=DE=1,
故答案为:1.
【点睛】
本题主要考查等腰三角形的性质及等边三角形的性质及垂直定义,解题的关键是根据三角形内角和定理列出符合题意的简易方程,从而求出结果.
13、6
【解析】
作DE⊥AB,交BA的延长线于E,作CF⊥AB,可得DE=CF,且AC=AD,可证Rt△ADE≌Rt△AFC,可得AE=AF,∠DAE=∠BAC,根据tan∠BAC=∠DAE=,可设DE=3a,AE=a,根据勾股定理可求a的值,由此可得BF,CF的值.再根据勾股定理求BC的长.
【详解】
如图:
作DE⊥AB,交BA的延长线于E,作CF⊥AB,
∵AB∥CD,DE⊥AB⊥,CF⊥AB
∴CF=DE,且AC=AD
∴Rt△ADE≌Rt△AFC
∴AE=AF,∠DAE=∠BAC
∵tan∠BAC=3
∴tan∠DAE=3
∴设AE=a,DE=3a
在Rt△BDE中,BD2=DE2+BE2
∴52=(4+a)2+27a2
解得a1=1,a2=-(不合题意舍去)
∴AE=1=AF,DE=3=CF
∴BF=AB-AF=3
在Rt△BFC中,BC==6
【点睛】
本题是解直角三角形问题,恰当地构建辅助线是本题的关键,利用三角形全等证明边相等,并借助同角的三角函数值求线段的长,与勾股定理相结合,依次求出各边的长即可.
14、
【解析】
分别求出各不等式的解集,再求出其公共解集即可.
【详解】
解不等式①,得x>1,
解不等式②,得x≤1,
所以不等式组的解集是1<x≤1,
故答案是:1<x≤1.
【点睛】
考查了一元一次不等式解集的求法,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).
15、
【解析】
试题解析:305000用科学记数法表示为:
故答案为
16、70°
【解析】
试题分析:由平角的定义可知,∠1+∠2+∠3=180°,又∠1=∠2,∠3=40°,所以∠1=(180°-40°)÷2=70°,因为a∥b,所以∠4=∠1=70°.
故答案为70°.
考点:角的计算;平行线的性质.
17、540
【解析】
过正五边形五个顶点,可以画三条对角线,把五边形分成3个三角形
∴正五边形的内角和=3180=540°
三、解答题(共7小题,满分69分)
18、(1);(2)点P的坐标是(0,4)或(0,-4).
【解析】
(1)求出OA=BC=2,将y=2代入求出x=2,得出M的坐标,把M的坐标代入反比例函数的解析式即可求出答案.
(2)求出四边形BMON的面积,求出OP的值,即可求出P的坐标.
【详解】
(1)∵B(4,2),四边形OABC是矩形,
∴OA=BC=2.
将y=2代入3得:x=2,∴M(2,2).
把M的坐标代入得:k=4,
∴反比例函数的解析式是;
(2).
∵△OPM的面积与四边形BMON的面积相等,
∴.
∵AM=2,
∴OP=4.
∴点P的坐标是(0,4)或(0,-4).
19、(1)证明见解析 (2)﹣6π
【解析】
(1)直接利用切线的判定方法结合圆心角定理分析得出OD⊥EF,即可得出答案;
(2)直接利用得出S△ACD=S△COD,再利用S阴影=S△AED﹣S扇形COD,求出答案.
【详解】
(1)证明:连接OD,
∵D为弧BC的中点,
∴∠CAD=∠BAD,
∵OA=OD,
∴∠BAD=∠ADO,
∴∠CAD=∠ADO,
∵DE⊥AC,
∴∠E=90°,
∴∠CAD+∠EDA=90°,即∠ADO+∠EDA=90°,
∴OD⊥EF,
∴EF为半圆O的切线;
(2)解:连接OC与CD,
∵DA=DF,
∴∠BAD=∠F,
∴∠BAD=∠F=∠CAD,
又∵∠BAD+∠CAD+∠F=90°,
∴∠F=30°,∠BAC=60°,
∵OC=OA,
∴△AOC为等边三角形,
∴∠AOC=60°,∠COB=120°,
∵OD⊥EF,∠F=30°,
∴∠DOF=60°,
在Rt△ODF中,DF=6,
∴OD=DF•tan30°=6,
在Rt△AED中,DA=6,∠CAD=30°,
∴DE=DA•sin30°=3,EA=DA•cs30°=9,
∵∠COD=180°﹣∠AOC﹣∠DOF=60°,
由CO=DO,
∴△COD是等边三角形,
∴∠OCD=60°,
∴∠DCO=∠AOC=60°,
∴CD∥AB,
故S△ACD=S△COD,
∴S阴影=S△AED﹣S扇形COD==.
【点睛】
此题主要考查了切线的判定,圆周角定理,等边三角形的判定与性质,解直角三角形及扇形面积求法等知识,得出S△ACD=S△COD是解题关键.
20、(1)3 ,(2)见解析
【解析】
(1)易证△ABD≌△CBD,再利用含30°的直角三角形求出AB、BD的长,即可求出面积.(2)作点B关于AD的对称点B’,点B关于CD的对应点B’’,连接B’B’’,与AD、CD交于EF,△AEF即为所求.
【详解】
(1)∵AB=BC,AD=CD=3, ∠BAD=∠BCD=90°,
∴△ABD≌△CBD(HL)
∴∠ADB=∠CDB=∠ADC=30°,
∴AB=
∴S△ABD==
∴四边形ABCD的面积为2S△ABD=
(2)作点B关于AD的对称点B’,点B关于CD的对应点B’’,连接B’B’’,与AD、CD交于EF,△BEF的周长为BE+EF+BF=B’E+EF+B’’F=B’B’’为最短.
故此时△BEF的周长最小.
【点睛】
此题主要考查含30°的直角三角形与对称性的应用,解题的关键是根据题意作出相应的图形进行求解.
21、见解析,.
【解析】
画树状图展示所有9种等可能的结果数,找出两次抽取的卡片上的数字都是偶数的结果数,然后根据概率公式求解.
【详解】
解:画树状图为:
共有9种等可能的结果数,其中两次抽取的卡片上的数字都是偶数的结果数为4,
所以两次抽取的卡片上的数字都是偶数的概率=.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
22、(1)捐款增长率为10%.(2)第四天该单位能收到13310元捐款.
【解析】
(1)根据“第一天收到捐款钱数×(1+每次降价的百分率)2=第三天收到捐款钱数”,设出未知数,列方程解答即可.
(2)第三天收到捐款钱数×(1+每次降价的百分率)=第四天收到捐款钱数,依此列式子解答即可.
【详解】
(1)设捐款增长率为x,根据题意列方程得:
,
解得x1=0.1,x2=-1.9(不合题意,舍去).
答:捐款增长率为10%.
(2)12100×(1+10%)=13310元.
答:第四天该单位能收到13310元捐款.
23、(1)总调查人数是100人;(2)在扇形统计图中“其它”类的圆心角是36°;(3)补全频数分布直方图见解析;(4)估计一下全校课余爱好是阅读的学生约为960人.
【解析】
(1)利用参加运动的人数除以其所占的比例即可求得这次调查的总人数;(2)用360°乘以“其它”类的人数所占的百分比即可求解;(3)求得“其它”类的人数、“娱乐”类的人数,补全统计图即可;(4)用总人数乘以课余爱好是阅读的学生人数所占的百分比即可求解.
【详解】
(1)从条形统计图中得出参加运动的人数为20人,所占的比例为20%,
∴总调查人数=20÷20%=100人;
(2)参加娱乐的人数=100×40%=40人,
从条形统计图中得出参加阅读的人数为30人,
∴“其它”类的人数=100﹣40﹣30﹣20=10人,所占比例=10÷100=10%,
在扇形统计图中“其它”类的圆心角=360×10%=36°;
(3)如图
(4)估计一下全校课余爱好是阅读的学生约为3200×=960(人).
【点睛】
本题考查了条形统计图、扇形统计图的应用,从条形统计图、扇形统计图中获取必要的信息是解决问题的关键.
24、(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.
【解析】
(1)可设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,根据等量关系:用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同,列出方程求解即可;
(2)可设他们可购买y棵乙种树苗,根据不等关系:再次购买两种树苗的总费用不超过1500元,列出不等式求解即可.
【详解】
(1)设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,
依题意有 ,
解得:x=30,
经检验,x=30是原方程的解,
x+10=30+10=40,
答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;
(2)设他们可购买y棵乙种树苗,依题意有
30×(1﹣10%)(50﹣y)+40y≤1500,
解得y≤11,
∵y为整数,
∴y最大为11,
答:他们最多可购买11棵乙种树苗.
【点睛】
本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找准等量关系与不等关系列出方程或不等式是解决问题的关键.
相关试卷
这是一份山西省忻州市定襄县市级名校2021-2022学年中考数学最后冲刺浓缩精华卷含解析,共19页。
这是一份江西省赣州市石城县市级名校2021-2022学年中考数学最后冲刺浓缩精华卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,对于反比例函数y=等内容,欢迎下载使用。
这是一份2022届湖南省株洲市荷塘区中考数学最后冲刺浓缩精华卷含解析,共22页。试卷主要包含了下列运算正确的是,不等式组的正整数解的个数是等内容,欢迎下载使用。