2021-2022学年黑龙江省齐齐哈尔市昂溪区市级名校中考数学最后一模试卷含解析
展开这是一份2021-2022学年黑龙江省齐齐哈尔市昂溪区市级名校中考数学最后一模试卷含解析,共18页。试卷主要包含了-5的相反数是,若,则的值为,下列运算正确的是,下列运算中,正确的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.已知二次函数y=﹣(x﹣h)2+1(为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最大值为﹣5,则h的值为( )
A.3﹣或1+ B.3﹣或3+
C.3+或1﹣ D.1﹣或1+
2.如图,把长方形纸片ABCD折叠,使顶点A与顶点C重合在一起,EF为折痕.若AB=9,BC=3,试求以折痕EF为边长的正方形面积( )
A.11 B.10 C.9 D.16
3.如图,立体图形的俯视图是
A. B. C. D.
4.如图,在6×4的正方形网格中,△ABC的顶点均为格点,则sin∠ACB=( )
A. B.2 C. D.
5.-5的相反数是( )
A.5 B. C. D.
6.若,则的值为( )
A.12 B.2 C.3 D.0
7.下列运算正确的是( )
A.2a+3a=5a2 B.(a3)3=a9 C.a2•a4=a8 D.a6÷a3=a2
8.下列运算中,正确的是 ( )
A.x2+5x2=6x4 B.x3 C. D.
9.如图,四边形ABCD内接于⊙O,若∠B=130°,则∠AOC的大小是( )
A.130° B.120° C.110° D.100°
10.下列运算正确的是( )
A.x•x4=x5 B.x6÷x3=x2 C.3x2﹣x2=3 D.(2x2)3=6x6
二、填空题(共7小题,每小题3分,满分21分)
11.如图,⊙M的半径为2,圆心M(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为_____.
12.比较大小: ___1.(填“>”、“<”或“=”)
13.如图,在平面直角坐标系中,函数y=x和y=﹣x的图象分别为直线l1,l2,过点A1(1,﹣)作x轴的垂线交11于点A2,过点A2作y轴的垂线交l2于点A3,过点A3作x轴的垂线交l1于点A4,过点A4作y轴的垂线交l2于点A5,…依次进行下去,则点A2018的横坐标为_____.
14.如果当a≠0,b≠0,且a≠b时,将直线y=ax+b和直线y=bx+a称为一对“对偶直线”,把它们的公共点称为该对“对偶直线”的“对偶点”,那么请写出“对偶点”为(1,4)的一对“对偶直线”:______.
15.如图,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,则∠BCE=_____ °.
16.如图为两正方形ABCD、CEFG和矩形DFHI的位置图,其中D,A两点分别在CG、BI上,若AB=3,CE=5,则矩形DFHI的面积是_____.
17.一次函数 y=kx+b 的图像如图所示,则当kx+b>0 时,x 的取值范围为___________.
三、解答题(共7小题,满分69分)
18.(10分)如图,以△ABC的边AB为直径的⊙O与边AC相交于点D,BC是⊙O的切线,E为BC的中点,连接AE、DE.
求证:DE是⊙O的切线;设△CDE的面积为 S1,四边形ABED的面积为 S1.若 S1=5S1,求tan∠BAC的值;在(1)的条件下,若AE=3,求⊙O的半径长.
19.(5分) (1)解方程: +=4
(2)解不等式组并把解集表示在数轴上:.
20.(8分)已知,求代数式的值.
21.(10分)已知:关于x的方程x2﹣(2m+1)x+2m=0
(1)求证:方程一定有两个实数根;
(2)若方程的两根为x1,x2,且|x1|=|x2|,求m的值.
22.(10分)如图,在△AOB中,∠ABO=90°,OB=1,AB=8,反比例函数y=在第一象限内的图象分别交OA,AB于点C和点D,且△BOD的面积S△BOD=1.求反比例函数解析式;求点C的坐标.
23.(12分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC的长为0.60m,底座BC与支架AC所成的角∠ACB=75°,点A、H、F在同一条直线上,支架AH段的长为1m,HF段的长为1.50m,篮板底部支架HE的长为0.75m.求篮板底部支架HE与支架AF所成的角∠FHE的度数.求篮板顶端F到地面的距离.(结果精确到0.1 m;参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)
24.(14分)如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.求坡底C点到大楼距离AC的值;求斜坡CD的长度.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
∵当x<h时,y随x的增大而增大,当x>h时,y随x的增大而减小,
∴①若h<1≤x≤3,x=1时,y取得最大值-5,
可得:-(1-h)2+1=-5,
解得:h=1-或h=1+(舍);
②若1≤x≤3<h,当x=3时,y取得最大值-5,
可得:-(3-h)2+1=-5,
解得:h=3+或h=3-(舍).
综上,h的值为1-或3+,
故选C.
点睛:本题主要考查二次函数的性质和最值,根据二次函数的增减性和最值分两种情况讨论是解题的关键.
2、B
【解析】
根据矩形和折叠性质可得△EHC≌△FBC,从而可得BF=HE=DE,设BF=EH=DE=x,则AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得BF=DE=AG=4,据此得出GF=1,由EF2=EG2+GF2可得答案.
【详解】
如图,∵四边形ABCD是矩形,
∴AD=BC,∠D=∠B=90°,
根据折叠的性质,有HC=AD,∠H=∠D,HE=DE,
∴HC=BC,∠H=∠B,
又∠HCE+∠ECF=90°,∠BCF+∠ECF=90°,
∴∠HCE=∠BCF,
在△EHC和△FBC中,
∵,
∴△EHC≌△FBC,
∴BF=HE,
∴BF=HE=DE,
设BF=EH=DE=x,
则AF=CF=9﹣x,
在Rt△BCF中,由BF2+BC2=CF2可得x2+32=(9﹣x)2,
解得:x=4,即DE=EH=BF=4,
则AG=DE=EH=BF=4,
∴GF=AB﹣AG﹣BF=9﹣4﹣4=1,
∴EF2=EG2+GF2=32+12=10,
故选B.
【点睛】
本题考查了折叠的性质、矩形的性质、三角形全等的判定与性质、勾股定理等,综合性较强,熟练掌握各相关的性质定理与判定定理是解题的关键.
3、C
【解析】
试题分析:立体图形的俯视图是C.故选C.
考点:简单组合体的三视图.
4、C
【解析】
如图,由图可知BD=2、CD=1、BC=,根据sin∠BCA=可得答案.
【详解】
解:如图所示,
∵BD=2、CD=1,
∴BC===,
则sin∠BCA===,
故选C.
【点睛】
本题主要考查解直角三角形,解题的关键是熟练掌握正弦函数的定义和勾股定理.
5、A
【解析】
由相反数的定义:“只有符号不同的两个数互为相反数”可知-5的相反数是5.
故选A.
6、A
【解析】
先根据得出,然后利用提公因式法和完全平方公式对进行变形,然后整体代入即可求值.
【详解】
∵,
∴,
∴.
故选:A.
【点睛】
本题主要考查整体代入法求代数式的值,掌握完全平方公式和整体代入法是解题的关键.
7、B
【解析】
直接利用同底数幂的乘除运算法则以及幂的乘方运算法则、合并同类项法则分别化简得出答案.
【详解】
A、2a+3a=5a,故此选项错误;
B、(a3)3=a9,故此选项正确;
C、a2•a4=a6,故此选项错误;
D、a6÷a3=a3,故此选项错误.
故选:B.
【点睛】
此题主要考查了同底数幂的乘除运算以及合并同类项和幂的乘方运算,正确掌握运算法则是解题关键.
8、C
【解析】
分析:直接利用积的乘方运算法则及合并同类项和同底数幂的乘除运算法则分别分析得出结果.
详解:A. x2+5x2= ,本项错误;B. ,本项错误;C. ,正确;
D.,本项错误.故选C.
点睛:本题主要考查了积的乘方运算及合并同类项和同底数幂的乘除运算,解答本题的关键是正确掌握运算法则.
9、D
【解析】
分析:先根据圆内接四边形的性质得到 然后根据圆周角定理求
详解:∵
∴
∴
故选D.
点睛:考查圆内接四边形的性质, 圆周角定理,掌握圆内接四边形的对角互补是解题的关键.
10、A
【解析】
根据同底数幂的乘法,同底数幂的除法,合并同类项,幂的乘方与积的乘方运算法则逐一计算作出判断:
A、x•x4=x5,原式计算正确,故本选项正确;
B、x6÷x3=x3,原式计算错误,故本选项错误;
C、3x2﹣x2=2x2,原式计算错误,故本选项错误;
D、(2x2)3=8x,原式计算错误,故本选项错误.
故选A.
二、填空题(共7小题,每小题3分,满分21分)
11、6
【解析】
点P在以O为圆心OA为半径的圆上,P是两个圆的交点,当⊙O与⊙M外切时,AB最小,根据条件求出AO即可求解;
【详解】
解:点P在以O为圆心OA为半径的圆上,
∴P是两个圆的交点,
当⊙O与⊙M外切时,AB最小,
∵⊙M的半径为2,圆心M(3,4),
∴PM=5,
∴OA=3,
∴AB=6,
故答案为6;
【点睛】
本题考查圆与圆的位置关系;能够将问题转化为两圆外切时AB最小是解题的关键.
12、<.
【解析】
根据算术平方根的定义即可求解.
【详解】
解:∵=1,
∴<=1,
∴<1.
故答案为<.
【点睛】
考查了算术平方根,非负数a的算术平方根a有双重非负性:①被开方数a是非负数;②算术平方根a本身是非负数.
13、1
【解析】
根据题意可以发现题目中各点的坐标变化规律,从而可以解答本题.
【详解】
解:由题意可得,
A1(1,-),A2(1,1),A3(-2,1),A4(-2,-2),A5(4,-2),…,
∵2018÷4=504…2,2018÷2=1009,
∴点A2018的横坐标为:1,
故答案为1.
【点睛】
本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,找出题目中点的横坐标的变化规律.
14、
【解析】
把(1,4)代入两函数表达式可得:a+b=4,再根据“对偶直线”的定义,即可确定a、b的值.
【详解】
把(1,4)代入得:a+b=4
又因为,,且,
所以当a=1是b=3
所以“对偶点”为(1,4)的一对“对偶直线”可以是:
故答案为
【点睛】
此题为新定义题型,关键是理解新定义,并按照新定义的要求解答.
15、1
【解析】
根据△ABC中DE垂直平分AC,可求出AE=CE,再根据等腰三角形的性质求出∠ACE=∠A=30°,再根据∠ACB=80°即可解答.
【详解】
∵DE垂直平分AC,∠A=30°,
∴AE=CE,∠ACE=∠A=30°,
∵∠ACB=80°,
∴∠BCE=80°-30°=1°.
故答案为:1.
16、
【解析】
由题意先求出DG和FG的长,再根据勾股定理可求得DF的长,然后再证明△DGF∽△DAI,依据相似三角形的性质可得到DI的长,最后依据矩形的面积公式求解即可.
【详解】
∵四边形ABCD、CEFG均为正方形,
∴CD=AD=3,CG=CE=5,
∴DG=2,
在Rt△DGF中, DF==,
∵∠FDG+∠GDI=90°,∠GDI+∠IDA=90°,
∴∠FDG=∠IDA.
又∵∠DAI=∠DGF,
∴△DGF∽△DAI,
∴,即,解得:DI=,
∴矩形DFHI的面积是=DF•DI=,
故答案为:.
【点睛】
本题考查了正方形的性质,矩形的性质,相似三角形的判定和性质,三角形的面积,熟练掌握相关性质定理与判定定理是解题的关键.
17、x>1
【解析】
分析:题目要求 kx+b>0,即一次函数的图像在x 轴上方时,观察图象即可得x的取值范围.
详解:
∵kx+b>0,
∴一次函数的图像在x 轴上方时,
∴x的取值范围为:x>1.
故答案为x>1.
点睛:本题考查了一次函数与一元一次不等式的关系,主要考查学生的观察视图能力.
三、解答题(共7小题,满分69分)
18、(1)见解析;(1)tan∠BAC=;(3)⊙O的半径=1.
【解析】
(1)连接DO,由圆周角定理就可以得出∠ADB=90°,可以得出∠CDB=90°,根据E为BC的中点可以得出DE=BE,就有∠EDB=∠EBD,OD=OB可以得出∠ODB=∠OBD,由等式的性质就可以得出∠ODE=90°就可以得出结论.
(1)由S1=5 S1可得△ADB的面积是△CDE面积的4倍,可求得AD:CD=1:1,可得.则tan∠BAC的值可求;
(3)由(1)的关系即可知,在Rt△AEB中,由勾股定理即可求AB的长,从而求⊙O的半径.
【详解】
解:(1)连接OD,
∴OD=OB
∴∠ODB=∠OBD.
∵AB是直径,
∴∠ADB=90°,
∴∠CDB=90°.
∵E为BC的中点,
∴DE=BE,
∴∠EDB=∠EBD,
∴∠ODB+∠EDB=∠OBD+∠EBD,
即∠EDO=∠EBO.
∵BC是以AB为直径的⊙O的切线,
∴AB⊥BC,
∴∠EBO=90°,
∴∠ODE=90°,
∴DE是⊙O的切线;
(1)∵S1=5 S1
∴S△ADB=1S△CDB
∴
∵△BDC∽△ADB
∴
∴DB1=AD•DC
∴
∴tan∠BAC==.
(3)∵tan∠BAC=
∴,得BC=AB
∵E为BC的中点
∴BE=AB
∵AE=3,
∴在Rt△AEB中,由勾股定理得
,解得AB=4
故⊙O的半径R=AB=1.
【点睛】
本题考查了圆周角定理的运用,直角三角形的性质的运用,等腰三角形的性质的运用,切线的判定定理的运用,勾股定理的运用,相似三角形的判定和性质,解答时正确添加辅助线是关键.
19、(1)x=1(2)4<x≤
【解析】
(1)先将整理方程再乘以最小公分母移项合并即可;
(2)求出每个不等式的解集,根据找不等式组解集的规律找出即可.
【详解】
(1)+=4,
方程整理得: =4,
去分母得:x﹣5=4(2x﹣3),
移项合并得:7x=7,
解得:x=1;
经检验x=1是分式方程的解;
(2)
解①得:x≤
解②得:x>4
∴不等式组的解集是4<x≤,
在数轴上表示不等式组的解集为:
.
【点睛】
本题考查了解一元二次方程组与分式方程,解题的关键是熟练的掌握解一元二次方程组与分式方程运算法则.
20、12
【解析】
解:∵,∴.
∴.
将代数式应用完全平方公式和平方差公式展开后合并同类项,将整体代入求值.
21、 (1)详见解析;(2)当x1≥0,x2≥0或当x1≤0,x2≤0时,m=;当x1≥0,x2≤0时或x1≤0,x2≥0时,m=﹣.
【解析】
试题分析:(1)根据判别式△≥0恒成立即可判断方程一定有两个实数根;
(2)先讨论x1,x2的正负,再根据根与系数的关系求解.
试题解析:(1)关于x的方程x2﹣(2m+1)x+2m=0,
∴△=(2m+1)2﹣8m=(2m﹣1)2≥0恒成立,
故方程一定有两个实数根;
(2)①当x1≥0,x2≥0时,即x1=x2,
∴△=(2m﹣1)2=0,
解得m=;
②当x1≥0,x2≤0时或x1≤0,x2≥0时,即x1+x2=0,
∴x1+x2=2m+1=0,
解得:m=﹣;
③当x1≤0,x2≤0时,即﹣x1=﹣x2,
∴△=(2m﹣1)2=0,
解得m=;
综上所述:当x1≥0,x2≥0或当x1≤0,x2≤0时,m=;当x1≥0,x2≤0时或x1≤0,x2≥0时,m=﹣.
22、(1)反比例函数解析式为y=;(2)C点坐标为(2,1)
【解析】
(1)由S△BOD=1可得BD的长,从而可得D的坐标,然后代入反比例函数解析式可求得k,从而得解析式为y=;
(2)由已知可确定A点坐标,再由待定系数法求出直线AB的解析式为y=2x,然后解方程组即可得到C点坐标.
【详解】
(1)∵∠ABO=90°,OB=1,S△BOD=1,
∴OB×BD=1,解得BD=2,
∴D(1,2)
将D(1,2)代入y=,
得2=,
∴k=8,
∴反比例函数解析式为y=;
(2)∵∠ABO=90°,OB=1,AB=8,
∴A点坐标为(1,8),
设直线OA的解析式为y=kx,
把A(1,8)代入得1k=8,解得k=2,
∴直线AB的解析式为y=2x,
解方程组得或,
∴C点坐标为(2,1).
23、(1)∠FHE=60°;(2)篮板顶端 F 到地面的距离是 4.4 米.
【解析】
(1)直接利用锐角三角函数关系得出cos∠FHE=,进而得出答案;
(2)延长FE交CB的延长线于M,过A作AG⊥FM于G,解直角三角形即可得到结论.
【详解】
(1 )由题意可得:cos∠FHE=,则∠FHE=60°;
(2)延长 FE 交 CB 的延长线于 M,过 A 作 AG⊥FM 于 G,
在 Rt△ABC 中,tan∠ACB=,
∴AB=BC•tan75°=0.60×3.732=2.2392,
∴GM=AB=2.2392,
在 Rt△AGF 中,∵∠FAG=∠FHE=60°,sin∠FAG=,
∴sin60°==,
∴FG≈2.17(m),
∴FM=FG+GM≈4.4(米),
答:篮板顶端 F 到地面的距离是 4.4 米.
【点睛】
本题考查解直角三角形、锐角三角函数、解题的关键是添加辅助线,构造直角三角形,记住锐角三角函数的定义.
24、(1)坡底C点到大楼距离AC的值为20米;(2)斜坡CD的长度为80-120米.
【解析】
分析:(1)在直角三角形ABC中,利用锐角三角函数定义求出AC的长即可;
(2)过点D作DF⊥AB于点F,则四边形AEDF为矩形,得AF=DE,DF=AE.利用DF=AE=AC+CE求解即可.
详解:(1)在直角△ABC中,∠BAC=90°,∠BCA=60°,AB=60米,则AC=(米)
答:坡底C点到大楼距离AC的值是20米.
(2)过点D作DF⊥AB于点F,则四边形AEDF为矩形,
∴AF=DE,DF=AE.
设CD=x米,在Rt△CDE中,DE=x米,CE=x米
在Rt△BDF中,∠BDF=45°,
∴BF=DF=AB-AF=60-x(米)
∵DF=AE=AC+CE,
∴20+x=60-x
解得:x=80-120(米)
故斜坡CD的长度为(80-120)米.
点睛:此题考查了解直角三角形-仰角俯角问题,坡度坡角问题,熟练掌握勾股定理是解本题的关键.
相关试卷
这是一份贵州省黔西县市级名校2021-2022学年中考数学最后一模试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
这是一份湖南省武冈市市级名校2021-2022学年中考数学最后一模试卷含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号,下列命题是真命题的是等内容,欢迎下载使用。
这是一份黑龙江省齐齐哈尔市昂昂溪区市级名校2021-2022学年中考试题猜想数学试卷含解析,共22页。试卷主要包含了抛物线y=3,下列计算正确的是等内容,欢迎下载使用。