搜索
    上传资料 赚现金
    英语朗读宝

    第28章+锐角三角形-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州)

    第28章+锐角三角形-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州)第1页
    第28章+锐角三角形-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州)第2页
    第28章+锐角三角形-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州)第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第28章+锐角三角形-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州)

    展开

    这是一份第28章+锐角三角形-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州),共28页。
    第28章 锐角三角形-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州)
    一.选择题(共5小题)
    1.(2022•毕节市)如图,某地修建的一座建筑物的截面图的高BC=5m,坡面AB的坡度为1:,则AB的长度为(  )

    A.10m B.10m C.5m D.5m
    2.(2022•黔东南州)如图,PA、PB分别与⊙O相切于点A、B,连接PO并延长与⊙O交于点C、D,若CD=12,PA=8,则sin∠ADB的值为(  )

    A. B. C. D.
    3.(2020•黔西南州)如图,某停车场入口的栏杆AB,从水平位置绕点O旋转到A′B′的位置,已知AO的长为4米.若栏杆的旋转角∠AOA′=α,则栏杆A端升高的高度为(  )

    A.米 B.4sinα米 C.米 D.4cosα米
    4.(2020•黔南州)如图,数学活动小组利用测角仪和皮尺测量学校旗杆的高度,在点D处测得旗杆顶端A的仰角∠ADE为55°,测角仪CD的高度为1米,其底端C与旗杆底端B之间的距离为6米,设旗杆AB的高度为x米,则下列关系式正确的是(  )

    A.tan55°= B.tan55°=
    C.sin55°= D.cos55°=
    5.(2020•遵义)构建几何图形解决代数问题是“数形结合”思想的重要应用,在计算tan15°时,如图.在Rt△ACB中,∠C=90°,∠ABC=30°,延长CB使BD=AB,连接AD,得∠D=15°,所以tan15°====2﹣.类比这种方法,计算tan22.5°的值为(  )

    A.+1 B.﹣1 C. D.
    二.填空题(共6小题)
    6.(2022•黔西南州)如图,我海军舰艇在某海域C岛附近巡航,计划从A岛向北偏东80°方向的B岛直线行驶.测得C岛在A岛的北偏东50°方向,在B岛的北偏西40°方向.A,B之间的距离为80nmile,则C岛到航线AB的最短距离约是    nmile.(参考数据:≈1.4,≈1.7,保留整数结果)

    7.(2022•黔东南州)如图,校园内有一株枯死的大树AB,距树12米处有一栋教学楼CD,为了安全,学校决定砍伐该树,站在楼顶D处,测得点B的仰角为45°,点A的俯角为30°.小青计算后得到如下结论:①AB≈18.8米;②CD≈8.4米;③若直接从点A处砍伐,树干倒向教学楼CD方向会对教学楼有影响;④若第一次在距点A的8米处的树干上砍伐,不会对教学楼CD造成危害.其中正确的是    .(填写序号,参考数值:≈1.7,≈1.4)

    8.(2021•黔西南州)如图,热气球的探测器显示,从热气球底部A处看一栋楼顶部的俯角为30°,看这栋楼底部的俯角为60°,热气球A处与地面距离为150m,则这栋楼的高度是    m.

    9.(2021•遵义)小明用一块含有60°(∠DAE=60°)的直角三角尺测量校园内某棵树的高度,示意图如图所示,若小明的眼睛与地面之间的垂直高度AB为1.62m,小明与树之间的水平距离BC为4m,则这棵树的高度约为    m.(结果精确到0.1m,参考数据:≈1.73)

    10.(2020•黔南州)如图所示,在四边形ABCD中,∠B=90°,AB=2,CD=8.连接AC,AC⊥CD,若sin∠ACB=,则AD长度是    .

    11.(2020•黔东南州)cos60°=   .
    三.解答题(共11小题)
    12.(2022•六盘水)“五一”节期间,许多露营爱好者在我市郊区露营,为遮阳和防雨会搭建一种“天幕”,其截面示意图是轴对称图形,对称轴是垂直于地面的支杆AB,用绳子拉直AD后系在树干EF上的点E处,使得A,D,E在一条直线上,通过调节点E的高度可控制“天幕”的开合,AC=AD=2m,BF=3m.
    (1)天晴时打开“天幕”,若∠α=65°,求遮阳宽度CD(结果精确到0.1m);
    (2)下雨时收拢“天幕”,∠α从65°减少到45°,求点E下降的高度(结果精确到0.1m).
    (参考数据:sin65°≈0.90,cos65°≈0.42,tan65°≈2.14,≈1.41)

    13.(2022•安顺)随着我国科学技术的不断发展,5G移动通信技术日趋完善,某市政府为了实现5G网络全覆盖,2021~2025年拟建设5G基站3000个,如图,在斜坡CB上有一建成的5G基站塔AB,小明在坡脚C处测得塔顶A的仰角为45°,然后他沿坡面CB行走了50米到达D处,D处离地平面的距离为30米且在D处测得塔顶A的仰角53°.(点A、B、C、D、E均在同一平面内,CE为地平线)(参考数据:sin53°≈,cos53°≈,tan53°≈)
    (1)求坡面CB的坡度;
    (2)求基站塔AB的高.

    14.(2022•贵阳)交通安全心系千万家,高速公路管理局在某隧道内安装了测速仪,如图所示的是该段隧道的截面示意图.测速仪C和测速仪E到路面之间的距离CD=EF=7m,测速仪C和E之间的距离CE=750m,一辆小汽车在水平的公路上由西向东匀速行驶,在测速仪C处测得小汽车在隧道入口A点的俯角为25°,在测速仪E处测得小汽车在B点的俯角为60°,小汽车在隧道中从点A行驶到点B所用的时间为38s(图中所有点都在同一平面内).
    (1)求A,B两点之间的距离(结果精确到1m);
    (2)若该隧道限速22m/s,判断小汽车从点A行驶到点B是否超速?通过计算说明理由.
    (参考数据:≈1.7,sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)

    15.(2022•铜仁市)为了测量高速公路某桥的桥墩高度,某数学兴趣小组在同一水平地面C、D两处实地测量,如图所示.在C处测得桥墩顶部A处的仰角为60°和桥墩底部B处的俯角为40°,在D处测得桥墩顶部A处的仰角为30°,测得C、D两点之间的距离为80m,直线AB、CD在同一平面内,请你用以上数据,计算桥墩AB的高度.(结果保留整数,参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,≈1.73)
    16.(2022•遵义)如图1所示是一种太阳能路灯,它由灯杆和灯管支架两部分构成.如图2,AB是灯杆,CD是灯管支架,灯管支架CD与灯杆间的夹角∠BDC=60°.综合实践小组的同学想知道灯管支架CD的长度,他们在地面的点E处测得灯管支架底部D的仰角为60°,在点F处测得灯管支架顶部C的仰角为30°,测得AE=3m,EF=8m(A,E,F在同一条直线上).根据以上数据,解答下列问题:
    (1)求灯管支架底部距地面高度AD的长(结果保留根号);
    (2)求灯管支架CD的长度(结果精确到0.1m,参考数据:≈1.73).

    17.(2022•黔东南州)(1)计算:(﹣1)﹣3++|2﹣|+(﹣1.57)0﹣;
    (2)先化简,再求值:÷﹣(+1),其中x=cos60°.
    18.(2021•铜仁市)如图,在一座山的前方有一栋住宅,已知山高AB=120m,楼高CD=99m,某天上午9时太阳光线从山顶点A处照射到住宅的点E外.在点A处测得点E的俯角∠EAM=45°,上午10时太阳光线从山顶点A处照射到住宅点F处,在点A处测得点F的俯角∠FAM=60°,已知每层楼的高度为3m,EF=40m,问:以当天测量数据为依据,不考虑季节天气变化,至少要买该住宅的第几层楼,才能使上午10时太阳光线照射到该层楼的外墙?(≈1.73)

    19.(2021•安顺)随着科学技术的不断进步,无人机被广泛应用到实际生活中,小星利用无人机来测量广场B,C两点之间的距离.如图所示,小星站在广场的B处遥控无人机,无人机在A处距离地面的飞行高度是41.6m,此时从无人机测得广场C处的俯角为63°,他抬头仰视无人机时,仰角为α,若小星的身高BE=1.6m,EA=50m(点A,E,B,C在同一平面内).
    (1)求仰角α的正弦值;
    (2)求B,C两点之间的距离(结果精确到1m).
    (sin63°≈0.89,cos63°≈0.45,tan63°≈1.96,sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)

    20.(2020•贵阳)脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,为了测量房屋的高度,在地面上C点测得屋顶A的仰角为35°,此时地面上C点、屋檐上E点、屋顶上A点三点恰好共线,继续向房屋方向走8m到达点D时,又测得屋檐E点的仰角为60°,房屋的顶层横梁EF=12m,EF∥CB,AB交EF于点G(点C,D,B在同一水平线上).(参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,≈1.7)
    (1)求屋顶到横梁的距离AG;
    (2)求房屋的高AB(结果精确到1m).

    21.(2020•铜仁市)如图,一艘船由西向东航行,在A处测得北偏东60°方向上有一座灯塔C,再向东继续航行60km到达B处,这时测得灯塔C在北偏东30°方向上,已知在灯塔C的周围47km内有暗礁,问这艘船继续向东航行是否安全?

    22.(2020•遵义)某校为检测师生体温,在校门安装了某型号测温门.如图为该测温门截面示意图,已知测温门AD的顶部A处距地面高为2.2m,为了解自己的有效测温区间.身高1.6m的小聪做了如下实验:当他在地面N处时测温门开始显示额头温度,此时在额头B处测得A的仰角为18°;在地面M处时,测温门停止显示额头温度,此时在额头C处测得A的仰角为60°.求小聪在地面的有效测温区间MN的长度.(额头到地面的距离以身高计,计算精确到0.1m,sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)


    第28章 锐角三角形-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州)
    参考答案与试题解析
    一.选择题(共5小题)
    1.(2022•毕节市)如图,某地修建的一座建筑物的截面图的高BC=5m,坡面AB的坡度为1:,则AB的长度为(  )

    A.10m B.10m C.5m D.5m
    【解答】解:∵坡面AB的坡度为==1:,
    ∴AC=5m,
    ∴AB==10m.
    故选:A.
    2.(2022•黔东南州)如图,PA、PB分别与⊙O相切于点A、B,连接PO并延长与⊙O交于点C、D,若CD=12,PA=8,则sin∠ADB的值为(  )

    A. B. C. D.
    【解答】解连接AO,BO,
    ∵PA、PB分别与⊙O相切于点A、B,
    ∴∠PAO=∠PBO=90°,PA=PB=8,
    ∵DC=12,
    ∴AO=6,
    ∴OP=10,
    在Rt△PAO和Rt△PBO中,

    ∴Rt△PAO≌Rt△PBO(HL),
    ∴∠AOP=∠BOP,
    ∴,
    ∴∠ADC=∠BDC,
    ∵∠AOC=2∠ADC,
    ∴∠ADB=∠AOC,
    ∴sin∠ADB=sin∠AOC==.
    故选:A.

    3.(2020•黔西南州)如图,某停车场入口的栏杆AB,从水平位置绕点O旋转到A′B′的位置,已知AO的长为4米.若栏杆的旋转角∠AOA′=α,则栏杆A端升高的高度为(  )

    A.米 B.4sinα米 C.米 D.4cosα米
    【解答】解:过点A′作A′C⊥AB于点C,
    由题意可知:A′O=AO=4,
    ∴sinα=,
    ∴A′C=4sinα,
    故选:B.

    4.(2020•黔南州)如图,数学活动小组利用测角仪和皮尺测量学校旗杆的高度,在点D处测得旗杆顶端A的仰角∠ADE为55°,测角仪CD的高度为1米,其底端C与旗杆底端B之间的距离为6米,设旗杆AB的高度为x米,则下列关系式正确的是(  )

    A.tan55°= B.tan55°=
    C.sin55°= D.cos55°=
    【解答】解:∵在Rt△ADE中,DE=6,AE=AB﹣BE=AB﹣CD=x﹣1,∠ADE=55°,
    ∴sin55°=,cos55°=,tan55°=,
    故选:B.
    5.(2020•遵义)构建几何图形解决代数问题是“数形结合”思想的重要应用,在计算tan15°时,如图.在Rt△ACB中,∠C=90°,∠ABC=30°,延长CB使BD=AB,连接AD,得∠D=15°,所以tan15°====2﹣.类比这种方法,计算tan22.5°的值为(  )

    A.+1 B.﹣1 C. D.
    【解答】解:在Rt△ACB中,∠C=90°,∠ABC=45°,延长CB使BD=AB,连接AD,得∠D=22.5°,

    设AC=BC=1,则AB=BD=,
    ∴tan22.5°===﹣1,
    故选:B.
    二.填空题(共6小题)
    6.(2022•黔西南州)如图,我海军舰艇在某海域C岛附近巡航,计划从A岛向北偏东80°方向的B岛直线行驶.测得C岛在A岛的北偏东50°方向,在B岛的北偏西40°方向.A,B之间的距离为80nmile,则C岛到航线AB的最短距离约是  34 nmile.(参考数据:≈1.4,≈1.7,保留整数结果)

    【解答】解:过点C作CF⊥AB于F,设CF=xnmile.
    由题意,得∠DAC=50°,∠DAB=80°,
    ∠CBE=40°,AD∥BE,
    则∠CAB=∠DAB﹣∠DAC=30°,
    ∵AD∥BE,
    ∴∠DAB+∠ABE=180°,
    ∴∠ABE=180°﹣∠DAB=180°﹣80°=100°,
    ∴∠ABC=∠ABE﹣∠CBE=100°﹣40°=60°.
    在Rt△ACF中,∵∠CAF=30°,
    ∴AF=CF=x.
    在Rt△CFB中,∵∠FBC=60°,
    ∴BF=CF=x.
    ∵AF+BF=AB,
    ∴x+x=80,
    解得x=20≈34.
    即C岛到航线AB的最短距离约为34nmile.
    故答案为:34.

    7.(2022•黔东南州)如图,校园内有一株枯死的大树AB,距树12米处有一栋教学楼CD,为了安全,学校决定砍伐该树,站在楼顶D处,测得点B的仰角为45°,点A的俯角为30°.小青计算后得到如下结论:①AB≈18.8米;②CD≈8.4米;③若直接从点A处砍伐,树干倒向教学楼CD方向会对教学楼有影响;④若第一次在距点A的8米处的树干上砍伐,不会对教学楼CD造成危害.其中正确的是  ①③④ .(填写序号,参考数值:≈1.7,≈1.4)

    【解答】解:过点D作DE⊥AB,垂足为E,

    则AE=DC,DE=AC=12米,
    在Rt△ADE中,∠ADE=30°,
    ∴AE=DE•tan30°=12×=4(米),
    AD=2AE=8(米),
    ∴CD=AE=4≈6.8(米),
    故②不正确;
    在Rt△BED中,BE=DE•tan45°=12(米),
    ∴AB=AE+BE=12+4≈18.8(米),
    故①正确;
    ∵AD=8≈13.6(米),
    ∴AB>AD,
    ∴若直接从点A处砍伐,树干倒向教学楼CD方向会对教学楼有影响,
    故③正确;
    ∵AB﹣8=18.8﹣8=10.8(米),
    ∴10.8米<13.6米,
    若第一次在距点A的8米处的树干上砍伐,不会对教学楼CD造成危害,
    故④正确;
    ∴小青计算后得到如上结论,其中正确的是:①③④,
    故答案为:①③④.

    8.(2021•黔西南州)如图,热气球的探测器显示,从热气球底部A处看一栋楼顶部的俯角为30°,看这栋楼底部的俯角为60°,热气球A处与地面距离为150m,则这栋楼的高度是  100 m.

    【解答】解:如图,过A作AH⊥BC,交CB的延长线于点H,

    在Rt△ACD中,
    ∵∠CAD=30°,AD=150m,
    ∴CD=AD•tan30°=150×=50(m),
    ∴AH=CD=50m.
    在Rt△ABH中,
    ∵∠BAH=30°,AH=50m,
    ∴BH=AH•tan30°=50×=50(m),
    ∴BC=AD﹣BH=150﹣50=100(m),
    答:这栋楼的高度为100m.
    故答案为:100.
    9.(2021•遵义)小明用一块含有60°(∠DAE=60°)的直角三角尺测量校园内某棵树的高度,示意图如图所示,若小明的眼睛与地面之间的垂直高度AB为1.62m,小明与树之间的水平距离BC为4m,则这棵树的高度约为  8.5 m.(结果精确到0.1m,参考数据:≈1.73)

    【解答】解:∵AB⊥BC,DC⊥BC,AD∥BC,
    ∴四边形ABCD是矩形,
    ∵BC=4m,AB=1.62m,
    ∴AD=BC=4m,DC=AB=1.62m,
    Rt△AED中,∵∠DAE=60°,AD=4m,
    ∴ED=AD•tan60°=4×=4(m),
    ∴CE=ED+DC=4+1.62≈8.5(m)
    答:这棵树的高度约为8.5m.
    故答案为:8.5.
    10.(2020•黔南州)如图所示,在四边形ABCD中,∠B=90°,AB=2,CD=8.连接AC,AC⊥CD,若sin∠ACB=,则AD长度是  10 .

    【解答】解:在Rt△ABC中,
    ∵AB=2,sin∠ACB==,
    ∴AC=2÷=6.
    在Rt△ADC中,
    AD=

    =10.
    故答案为:10.

    11.(2020•黔东南州)cos60°=  .
    【解答】解:cos60°=.
    故答案为:.
    三.解答题(共11小题)
    12.(2022•六盘水)“五一”节期间,许多露营爱好者在我市郊区露营,为遮阳和防雨会搭建一种“天幕”,其截面示意图是轴对称图形,对称轴是垂直于地面的支杆AB,用绳子拉直AD后系在树干EF上的点E处,使得A,D,E在一条直线上,通过调节点E的高度可控制“天幕”的开合,AC=AD=2m,BF=3m.
    (1)天晴时打开“天幕”,若∠α=65°,求遮阳宽度CD(结果精确到0.1m);
    (2)下雨时收拢“天幕”,∠α从65°减少到45°,求点E下降的高度(结果精确到0.1m).
    (参考数据:sin65°≈0.90,cos65°≈0.42,tan65°≈2.14,≈1.41)

    【解答】解:(1)由对称知,CD=2OD,AD=AC=2m,∠AOD=90°,
    在Rt△AOD中,∠OAD=α=65°,
    ∴sinα=,
    ∴OD=AD•sinα=2×sin65°≈2×0.90=1.80m,
    ∴CD=2OD=3.6m,
    答:遮阳宽度CD约为3.6米;

    (2)如图,

    过点E作EH⊥AB于H,
    ∴∠BHE=90°,
    ∵AB⊥BF,EF⊥BF,
    ∴∠ABF=∠EFB=90°,
    ∴∠ABF=∠EFB=∠BHE=90°,
    ∴EH=BF=3m,
    在Rt△AHE中,tana=,
    ∴AH=,
    当∠α=65°时,AH=≈≈1.40m,
    当∠α=45°时,AH==3,
    ∴当∠α从65°减少到45°时,点E下降的高度约为3﹣1.40=1.6m.
    13.(2022•安顺)随着我国科学技术的不断发展,5G移动通信技术日趋完善,某市政府为了实现5G网络全覆盖,2021~2025年拟建设5G基站3000个,如图,在斜坡CB上有一建成的5G基站塔AB,小明在坡脚C处测得塔顶A的仰角为45°,然后他沿坡面CB行走了50米到达D处,D处离地平面的距离为30米且在D处测得塔顶A的仰角53°.(点A、B、C、D、E均在同一平面内,CE为地平线)(参考数据:sin53°≈,cos53°≈,tan53°≈)
    (1)求坡面CB的坡度;
    (2)求基站塔AB的高.

    【解答】解:(1)如图,过点D作AB的垂线,交AB的延长线于点F,过点D作DM⊥CE,垂足为M.

    由题意可知:CD=50米,DM=30米.
    在Rt△CDM中,由勾股定理得:CM2=CD2﹣DM2,
    ∴CM=40米,
    ∴斜坡CB的坡度=DM:CM=3:4;
    (2)设DF=4a米,则MN=4a米,BF=3a米,
    ∵∠ACN=45°,
    ∴∠CAN=∠ACN=45°,
    ∴AN=CN=(40+4a)米,
    ∴AF=AN﹣NF=AN﹣DM=40+4a﹣30=(10+4a)米.
    在Rt△ADF中,
    ∵DF=4a米,AF=(10+4a)米,∠ADF=53°,
    ∴tan∠ADF=,
    ∴=,
    ∴解得a=,
    ∴AF=10+4a=10+30=40(米),
    ∵BF=3a=米,
    ∴AB=AF﹣BF=40﹣=(米).
    答:基站塔AB的高为米.
    14.(2022•贵阳)交通安全心系千万家,高速公路管理局在某隧道内安装了测速仪,如图所示的是该段隧道的截面示意图.测速仪C和测速仪E到路面之间的距离CD=EF=7m,测速仪C和E之间的距离CE=750m,一辆小汽车在水平的公路上由西向东匀速行驶,在测速仪C处测得小汽车在隧道入口A点的俯角为25°,在测速仪E处测得小汽车在B点的俯角为60°,小汽车在隧道中从点A行驶到点B所用的时间为38s(图中所有点都在同一平面内).
    (1)求A,B两点之间的距离(结果精确到1m);
    (2)若该隧道限速22m/s,判断小汽车从点A行驶到点B是否超速?通过计算说明理由.
    (参考数据:≈1.7,sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)

    【解答】解:(1)由题意得:
    ∠CAD=25°,∠EBF=60°,CE=DF=750米,
    在Rt△ACD中,CD=7米,
    ∴AD=≈=14(米),
    在Rt△BEF中,EF=7米,
    ∴BF==≈4.1(米),
    ∴AB=AD+DF﹣BF=14+750﹣4.1≈760(米),
    ∴A,B两点之间的距离约为760米;
    (2)小汽车从点A行驶到点B没有超速,
    理由:由题意得:
    760÷38=20米/秒,
    ∵20米/秒<22米/秒,
    ∴小汽车从点A行驶到点B没有超速.
    15.(2022•铜仁市)为了测量高速公路某桥的桥墩高度,某数学兴趣小组在同一水平地面C、D两处实地测量,如图所示.在C处测得桥墩顶部A处的仰角为60°和桥墩底部B处的俯角为40°,在D处测得桥墩顶部A处的仰角为30°,测得C、D两点之间的距离为80m,直线AB、CD在同一平面内,请你用以上数据,计算桥墩AB的高度.(结果保留整数,参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,≈1.73)
    【解答】解:延长DC交AB于点E,

    则DE⊥AB,
    设CE=x米,
    在Rt△AEC中,∠ACE=60°,
    ∴AE=EC•tan60°=(米),
    在Rt△BEC中,∠BCE=40°,
    ∴BE=EC•tan40°=0.84x(米),
    在Rt△AED中,∠D=30°,
    ∴DE===3x(米),
    ∵CD=80米
    ∴DE﹣CE=CD,
    ∴3x﹣x=80,
    ∴x=40,
    ∴AB=AE+BE≈40×(1.73+0.84)=102.8≈103米,
    ∴桥墩AB的高度为103米.

    16.(2022•遵义)如图1所示是一种太阳能路灯,它由灯杆和灯管支架两部分构成.如图2,AB是灯杆,CD是灯管支架,灯管支架CD与灯杆间的夹角∠BDC=60°.综合实践小组的同学想知道灯管支架CD的长度,他们在地面的点E处测得灯管支架底部D的仰角为60°,在点F处测得灯管支架顶部C的仰角为30°,测得AE=3m,EF=8m(A,E,F在同一条直线上).根据以上数据,解答下列问题:
    (1)求灯管支架底部距地面高度AD的长(结果保留根号);
    (2)求灯管支架CD的长度(结果精确到0.1m,参考数据:≈1.73).

    【解答】解:(1)在Rt△DAE中,∠AED=60°,AE=3m,
    ∴AD=AE•tan60°=3(米),
    ∴灯管支架底部距地面高度AD的长为3米;
    (2)延长FC交AB于点G,

    ∵∠DAE=90°,∠AFC=30°,
    ∴∠DGC=90°﹣∠AFC=60°,
    ∵∠GDC=60°,
    ∴∠DCG=180°﹣∠GDC﹣∠DGC=60°,
    ∴△DGC是等边三角形,
    ∴DC=DG,
    ∵AE=3米,EF=8米,
    ∴AF=AE+EF=11(米),
    在Rt△AFG中,AG=AF•tan30°=11×=(米),
    ∴DC=DG=AG﹣AD=﹣3=≈1.2(米),
    ∴灯管支架CD的长度约为1.2米.

    17.(2022•黔东南州)(1)计算:(﹣1)﹣3++|2﹣|+(﹣1.57)0﹣;
    (2)先化简,再求值:÷﹣(+1),其中x=cos60°.
    【解答】解:(1)原式=+2+(﹣2)+1﹣2
    =﹣1+2+﹣2+1﹣2
    =;
    (2)原式=

    =,
    把x=cos60°=代入上式,
    原式==﹣2.
    18.(2021•铜仁市)如图,在一座山的前方有一栋住宅,已知山高AB=120m,楼高CD=99m,某天上午9时太阳光线从山顶点A处照射到住宅的点E外.在点A处测得点E的俯角∠EAM=45°,上午10时太阳光线从山顶点A处照射到住宅点F处,在点A处测得点F的俯角∠FAM=60°,已知每层楼的高度为3m,EF=40m,问:以当天测量数据为依据,不考虑季节天气变化,至少要买该住宅的第几层楼,才能使上午10时太阳光线照射到该层楼的外墙?(≈1.73)

    【解答】解:根据题意可知:
    四边形ABDM是矩形,
    ∴AB=MD=120m,
    在Rt△AME中,ME=AMtan45°=AM,
    在Rt△AMF中,MF=AMtan60°=AM,
    ∵EF=MF﹣ME=40m,
    ∴AM﹣AM=40,
    ∴AM≈54.8(m),
    ∴MF≈54.8×1.73≈94.80(m),
    ∴DF=120﹣94.80=25.2(m),
    25.2÷3≈8.4,
    ∴至少要买该住宅的第9层楼,才能使上午10时太阳光线照射到该层楼的外墙.
    答:至少要买该住宅的第9层楼,才能使上午10时太阳光线照射到该层楼的外墙.
    19.(2021•安顺)随着科学技术的不断进步,无人机被广泛应用到实际生活中,小星利用无人机来测量广场B,C两点之间的距离.如图所示,小星站在广场的B处遥控无人机,无人机在A处距离地面的飞行高度是41.6m,此时从无人机测得广场C处的俯角为63°,他抬头仰视无人机时,仰角为α,若小星的身高BE=1.6m,EA=50m(点A,E,B,C在同一平面内).
    (1)求仰角α的正弦值;
    (2)求B,C两点之间的距离(结果精确到1m).
    (sin63°≈0.89,cos63°≈0.45,tan63°≈1.96,sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)

    【解答】解:(1)如图,过A点作AD⊥BC于D,过E点作EF⊥AD于F,
    ∵∠EBD=∠FDB=∠DFE=90°,
    ∴四边形BDFE为矩形,
    ∴EF=BD,DF=BE=1.6m,
    ∴AF=AD﹣DF=41.6﹣1.6=40(m),
    在Rt△AEF中,sin∠AEF===,
    即sinα=.
    答:仰角α的正弦值为;
    (2)在Rt△AEF中,EF===30(m),
    在Rt△ACD中,∠ACD=63°,AD=41.6m,
    ∵tan∠ACD=,
    ∴CD==≈21.22(m),
    ∴BC=BD+CD=30+21.22≈51(m).
    答:B,C两点之间的距离约为51m.

    20.(2020•贵阳)脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,为了测量房屋的高度,在地面上C点测得屋顶A的仰角为35°,此时地面上C点、屋檐上E点、屋顶上A点三点恰好共线,继续向房屋方向走8m到达点D时,又测得屋檐E点的仰角为60°,房屋的顶层横梁EF=12m,EF∥CB,AB交EF于点G(点C,D,B在同一水平线上).(参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,≈1.7)
    (1)求屋顶到横梁的距离AG;
    (2)求房屋的高AB(结果精确到1m).

    【解答】解:(1)∵房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,EF∥BC,
    ∴AG⊥EF,EG=EF,∠AEG=∠ACB=35°,
    在Rt△AGE中,∠AGE=90°,∠AEG=35°,
    ∵tan∠AEG=tan35°=,EG=6,
    ∴AG=6×0.7=4.2(米);
    答:屋顶到横梁的距离AG约为4.2米;
    (2)过E作EH⊥CB于H,
    设EH=x,
    在Rt△EDH中,∠EHD=90°,∠EDH=60°,
    ∵tan∠EDH=,
    ∴DH=,
    在Rt△ECH中,∠EHC=90°,∠ECH=35°,
    ∵tan∠ECH=,
    ∴CH=,
    ∵CH﹣DH=CD=8,
    ∴﹣=8,
    解得:x≈9.52,
    ∴AB=AG+BG=13.72≈14(米),
    答:房屋的高AB约为14米.

    21.(2020•铜仁市)如图,一艘船由西向东航行,在A处测得北偏东60°方向上有一座灯塔C,再向东继续航行60km到达B处,这时测得灯塔C在北偏东30°方向上,已知在灯塔C的周围47km内有暗礁,问这艘船继续向东航行是否安全?

    【解答】解:过点C作CD⊥AB,垂足为D.如图所示:
    根据题意可知∠BAC=90°﹣60°=30°,∠DBC=90°﹣30°=60°,
    ∵∠DBC=∠ACB+∠BAC,
    ∴∠BAC=30°=∠ACB,
    ∴BC=AB=60km,
    在Rt△BCD中,∠CDB=90°,∠DBC=60°,sin∠DBC=,
    ∴sin60°=,
    ∴CD=60×sin60°=60×=30(km)>47km,
    ∴这艘船继续向东航行安全.

    22.(2020•遵义)某校为检测师生体温,在校门安装了某型号测温门.如图为该测温门截面示意图,已知测温门AD的顶部A处距地面高为2.2m,为了解自己的有效测温区间.身高1.6m的小聪做了如下实验:当他在地面N处时测温门开始显示额头温度,此时在额头B处测得A的仰角为18°;在地面M处时,测温门停止显示额头温度,此时在额头C处测得A的仰角为60°.求小聪在地面的有效测温区间MN的长度.(额头到地面的距离以身高计,计算精确到0.1m,sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)

    【解答】解:延长BC交AD于点E,则AE=AD﹣DE=0.6m.
    BE=≈1.875m,CE=≈0.346m.
    所以BC=BE﹣CE≈1.529m.
    所以MN=BC≈1.5m.
    答:小聪在地面的有效测温区间MN的长度约为1.5m.

    相关试卷

    第29章+投影与视图-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州):

    这是一份第29章+投影与视图-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州),共13页。

    第27章+相似-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州):

    这是一份第27章+相似-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州),共13页。

    第26章+反比例函数-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州):

    这是一份第26章+反比例函数-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州),共29页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map