第28章+锐角三角形-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州)
展开
这是一份第28章+锐角三角形-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州),共28页。
第28章 锐角三角形-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州)
一.选择题(共5小题)
1.(2022•毕节市)如图,某地修建的一座建筑物的截面图的高BC=5m,坡面AB的坡度为1:,则AB的长度为( )
A.10m B.10m C.5m D.5m
2.(2022•黔东南州)如图,PA、PB分别与⊙O相切于点A、B,连接PO并延长与⊙O交于点C、D,若CD=12,PA=8,则sin∠ADB的值为( )
A. B. C. D.
3.(2020•黔西南州)如图,某停车场入口的栏杆AB,从水平位置绕点O旋转到A′B′的位置,已知AO的长为4米.若栏杆的旋转角∠AOA′=α,则栏杆A端升高的高度为( )
A.米 B.4sinα米 C.米 D.4cosα米
4.(2020•黔南州)如图,数学活动小组利用测角仪和皮尺测量学校旗杆的高度,在点D处测得旗杆顶端A的仰角∠ADE为55°,测角仪CD的高度为1米,其底端C与旗杆底端B之间的距离为6米,设旗杆AB的高度为x米,则下列关系式正确的是( )
A.tan55°= B.tan55°=
C.sin55°= D.cos55°=
5.(2020•遵义)构建几何图形解决代数问题是“数形结合”思想的重要应用,在计算tan15°时,如图.在Rt△ACB中,∠C=90°,∠ABC=30°,延长CB使BD=AB,连接AD,得∠D=15°,所以tan15°====2﹣.类比这种方法,计算tan22.5°的值为( )
A.+1 B.﹣1 C. D.
二.填空题(共6小题)
6.(2022•黔西南州)如图,我海军舰艇在某海域C岛附近巡航,计划从A岛向北偏东80°方向的B岛直线行驶.测得C岛在A岛的北偏东50°方向,在B岛的北偏西40°方向.A,B之间的距离为80nmile,则C岛到航线AB的最短距离约是 nmile.(参考数据:≈1.4,≈1.7,保留整数结果)
7.(2022•黔东南州)如图,校园内有一株枯死的大树AB,距树12米处有一栋教学楼CD,为了安全,学校决定砍伐该树,站在楼顶D处,测得点B的仰角为45°,点A的俯角为30°.小青计算后得到如下结论:①AB≈18.8米;②CD≈8.4米;③若直接从点A处砍伐,树干倒向教学楼CD方向会对教学楼有影响;④若第一次在距点A的8米处的树干上砍伐,不会对教学楼CD造成危害.其中正确的是 .(填写序号,参考数值:≈1.7,≈1.4)
8.(2021•黔西南州)如图,热气球的探测器显示,从热气球底部A处看一栋楼顶部的俯角为30°,看这栋楼底部的俯角为60°,热气球A处与地面距离为150m,则这栋楼的高度是 m.
9.(2021•遵义)小明用一块含有60°(∠DAE=60°)的直角三角尺测量校园内某棵树的高度,示意图如图所示,若小明的眼睛与地面之间的垂直高度AB为1.62m,小明与树之间的水平距离BC为4m,则这棵树的高度约为 m.(结果精确到0.1m,参考数据:≈1.73)
10.(2020•黔南州)如图所示,在四边形ABCD中,∠B=90°,AB=2,CD=8.连接AC,AC⊥CD,若sin∠ACB=,则AD长度是 .
11.(2020•黔东南州)cos60°= .
三.解答题(共11小题)
12.(2022•六盘水)“五一”节期间,许多露营爱好者在我市郊区露营,为遮阳和防雨会搭建一种“天幕”,其截面示意图是轴对称图形,对称轴是垂直于地面的支杆AB,用绳子拉直AD后系在树干EF上的点E处,使得A,D,E在一条直线上,通过调节点E的高度可控制“天幕”的开合,AC=AD=2m,BF=3m.
(1)天晴时打开“天幕”,若∠α=65°,求遮阳宽度CD(结果精确到0.1m);
(2)下雨时收拢“天幕”,∠α从65°减少到45°,求点E下降的高度(结果精确到0.1m).
(参考数据:sin65°≈0.90,cos65°≈0.42,tan65°≈2.14,≈1.41)
13.(2022•安顺)随着我国科学技术的不断发展,5G移动通信技术日趋完善,某市政府为了实现5G网络全覆盖,2021~2025年拟建设5G基站3000个,如图,在斜坡CB上有一建成的5G基站塔AB,小明在坡脚C处测得塔顶A的仰角为45°,然后他沿坡面CB行走了50米到达D处,D处离地平面的距离为30米且在D处测得塔顶A的仰角53°.(点A、B、C、D、E均在同一平面内,CE为地平线)(参考数据:sin53°≈,cos53°≈,tan53°≈)
(1)求坡面CB的坡度;
(2)求基站塔AB的高.
14.(2022•贵阳)交通安全心系千万家,高速公路管理局在某隧道内安装了测速仪,如图所示的是该段隧道的截面示意图.测速仪C和测速仪E到路面之间的距离CD=EF=7m,测速仪C和E之间的距离CE=750m,一辆小汽车在水平的公路上由西向东匀速行驶,在测速仪C处测得小汽车在隧道入口A点的俯角为25°,在测速仪E处测得小汽车在B点的俯角为60°,小汽车在隧道中从点A行驶到点B所用的时间为38s(图中所有点都在同一平面内).
(1)求A,B两点之间的距离(结果精确到1m);
(2)若该隧道限速22m/s,判断小汽车从点A行驶到点B是否超速?通过计算说明理由.
(参考数据:≈1.7,sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)
15.(2022•铜仁市)为了测量高速公路某桥的桥墩高度,某数学兴趣小组在同一水平地面C、D两处实地测量,如图所示.在C处测得桥墩顶部A处的仰角为60°和桥墩底部B处的俯角为40°,在D处测得桥墩顶部A处的仰角为30°,测得C、D两点之间的距离为80m,直线AB、CD在同一平面内,请你用以上数据,计算桥墩AB的高度.(结果保留整数,参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,≈1.73)
16.(2022•遵义)如图1所示是一种太阳能路灯,它由灯杆和灯管支架两部分构成.如图2,AB是灯杆,CD是灯管支架,灯管支架CD与灯杆间的夹角∠BDC=60°.综合实践小组的同学想知道灯管支架CD的长度,他们在地面的点E处测得灯管支架底部D的仰角为60°,在点F处测得灯管支架顶部C的仰角为30°,测得AE=3m,EF=8m(A,E,F在同一条直线上).根据以上数据,解答下列问题:
(1)求灯管支架底部距地面高度AD的长(结果保留根号);
(2)求灯管支架CD的长度(结果精确到0.1m,参考数据:≈1.73).
17.(2022•黔东南州)(1)计算:(﹣1)﹣3++|2﹣|+(﹣1.57)0﹣;
(2)先化简,再求值:÷﹣(+1),其中x=cos60°.
18.(2021•铜仁市)如图,在一座山的前方有一栋住宅,已知山高AB=120m,楼高CD=99m,某天上午9时太阳光线从山顶点A处照射到住宅的点E外.在点A处测得点E的俯角∠EAM=45°,上午10时太阳光线从山顶点A处照射到住宅点F处,在点A处测得点F的俯角∠FAM=60°,已知每层楼的高度为3m,EF=40m,问:以当天测量数据为依据,不考虑季节天气变化,至少要买该住宅的第几层楼,才能使上午10时太阳光线照射到该层楼的外墙?(≈1.73)
19.(2021•安顺)随着科学技术的不断进步,无人机被广泛应用到实际生活中,小星利用无人机来测量广场B,C两点之间的距离.如图所示,小星站在广场的B处遥控无人机,无人机在A处距离地面的飞行高度是41.6m,此时从无人机测得广场C处的俯角为63°,他抬头仰视无人机时,仰角为α,若小星的身高BE=1.6m,EA=50m(点A,E,B,C在同一平面内).
(1)求仰角α的正弦值;
(2)求B,C两点之间的距离(结果精确到1m).
(sin63°≈0.89,cos63°≈0.45,tan63°≈1.96,sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)
20.(2020•贵阳)脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,为了测量房屋的高度,在地面上C点测得屋顶A的仰角为35°,此时地面上C点、屋檐上E点、屋顶上A点三点恰好共线,继续向房屋方向走8m到达点D时,又测得屋檐E点的仰角为60°,房屋的顶层横梁EF=12m,EF∥CB,AB交EF于点G(点C,D,B在同一水平线上).(参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,≈1.7)
(1)求屋顶到横梁的距离AG;
(2)求房屋的高AB(结果精确到1m).
21.(2020•铜仁市)如图,一艘船由西向东航行,在A处测得北偏东60°方向上有一座灯塔C,再向东继续航行60km到达B处,这时测得灯塔C在北偏东30°方向上,已知在灯塔C的周围47km内有暗礁,问这艘船继续向东航行是否安全?
22.(2020•遵义)某校为检测师生体温,在校门安装了某型号测温门.如图为该测温门截面示意图,已知测温门AD的顶部A处距地面高为2.2m,为了解自己的有效测温区间.身高1.6m的小聪做了如下实验:当他在地面N处时测温门开始显示额头温度,此时在额头B处测得A的仰角为18°;在地面M处时,测温门停止显示额头温度,此时在额头C处测得A的仰角为60°.求小聪在地面的有效测温区间MN的长度.(额头到地面的距离以身高计,计算精确到0.1m,sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)
第28章 锐角三角形-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州)
参考答案与试题解析
一.选择题(共5小题)
1.(2022•毕节市)如图,某地修建的一座建筑物的截面图的高BC=5m,坡面AB的坡度为1:,则AB的长度为( )
A.10m B.10m C.5m D.5m
【解答】解:∵坡面AB的坡度为==1:,
∴AC=5m,
∴AB==10m.
故选:A.
2.(2022•黔东南州)如图,PA、PB分别与⊙O相切于点A、B,连接PO并延长与⊙O交于点C、D,若CD=12,PA=8,则sin∠ADB的值为( )
A. B. C. D.
【解答】解连接AO,BO,
∵PA、PB分别与⊙O相切于点A、B,
∴∠PAO=∠PBO=90°,PA=PB=8,
∵DC=12,
∴AO=6,
∴OP=10,
在Rt△PAO和Rt△PBO中,
,
∴Rt△PAO≌Rt△PBO(HL),
∴∠AOP=∠BOP,
∴,
∴∠ADC=∠BDC,
∵∠AOC=2∠ADC,
∴∠ADB=∠AOC,
∴sin∠ADB=sin∠AOC==.
故选:A.
3.(2020•黔西南州)如图,某停车场入口的栏杆AB,从水平位置绕点O旋转到A′B′的位置,已知AO的长为4米.若栏杆的旋转角∠AOA′=α,则栏杆A端升高的高度为( )
A.米 B.4sinα米 C.米 D.4cosα米
【解答】解:过点A′作A′C⊥AB于点C,
由题意可知:A′O=AO=4,
∴sinα=,
∴A′C=4sinα,
故选:B.
4.(2020•黔南州)如图,数学活动小组利用测角仪和皮尺测量学校旗杆的高度,在点D处测得旗杆顶端A的仰角∠ADE为55°,测角仪CD的高度为1米,其底端C与旗杆底端B之间的距离为6米,设旗杆AB的高度为x米,则下列关系式正确的是( )
A.tan55°= B.tan55°=
C.sin55°= D.cos55°=
【解答】解:∵在Rt△ADE中,DE=6,AE=AB﹣BE=AB﹣CD=x﹣1,∠ADE=55°,
∴sin55°=,cos55°=,tan55°=,
故选:B.
5.(2020•遵义)构建几何图形解决代数问题是“数形结合”思想的重要应用,在计算tan15°时,如图.在Rt△ACB中,∠C=90°,∠ABC=30°,延长CB使BD=AB,连接AD,得∠D=15°,所以tan15°====2﹣.类比这种方法,计算tan22.5°的值为( )
A.+1 B.﹣1 C. D.
【解答】解:在Rt△ACB中,∠C=90°,∠ABC=45°,延长CB使BD=AB,连接AD,得∠D=22.5°,
设AC=BC=1,则AB=BD=,
∴tan22.5°===﹣1,
故选:B.
二.填空题(共6小题)
6.(2022•黔西南州)如图,我海军舰艇在某海域C岛附近巡航,计划从A岛向北偏东80°方向的B岛直线行驶.测得C岛在A岛的北偏东50°方向,在B岛的北偏西40°方向.A,B之间的距离为80nmile,则C岛到航线AB的最短距离约是 34 nmile.(参考数据:≈1.4,≈1.7,保留整数结果)
【解答】解:过点C作CF⊥AB于F,设CF=xnmile.
由题意,得∠DAC=50°,∠DAB=80°,
∠CBE=40°,AD∥BE,
则∠CAB=∠DAB﹣∠DAC=30°,
∵AD∥BE,
∴∠DAB+∠ABE=180°,
∴∠ABE=180°﹣∠DAB=180°﹣80°=100°,
∴∠ABC=∠ABE﹣∠CBE=100°﹣40°=60°.
在Rt△ACF中,∵∠CAF=30°,
∴AF=CF=x.
在Rt△CFB中,∵∠FBC=60°,
∴BF=CF=x.
∵AF+BF=AB,
∴x+x=80,
解得x=20≈34.
即C岛到航线AB的最短距离约为34nmile.
故答案为:34.
7.(2022•黔东南州)如图,校园内有一株枯死的大树AB,距树12米处有一栋教学楼CD,为了安全,学校决定砍伐该树,站在楼顶D处,测得点B的仰角为45°,点A的俯角为30°.小青计算后得到如下结论:①AB≈18.8米;②CD≈8.4米;③若直接从点A处砍伐,树干倒向教学楼CD方向会对教学楼有影响;④若第一次在距点A的8米处的树干上砍伐,不会对教学楼CD造成危害.其中正确的是 ①③④ .(填写序号,参考数值:≈1.7,≈1.4)
【解答】解:过点D作DE⊥AB,垂足为E,
则AE=DC,DE=AC=12米,
在Rt△ADE中,∠ADE=30°,
∴AE=DE•tan30°=12×=4(米),
AD=2AE=8(米),
∴CD=AE=4≈6.8(米),
故②不正确;
在Rt△BED中,BE=DE•tan45°=12(米),
∴AB=AE+BE=12+4≈18.8(米),
故①正确;
∵AD=8≈13.6(米),
∴AB>AD,
∴若直接从点A处砍伐,树干倒向教学楼CD方向会对教学楼有影响,
故③正确;
∵AB﹣8=18.8﹣8=10.8(米),
∴10.8米<13.6米,
若第一次在距点A的8米处的树干上砍伐,不会对教学楼CD造成危害,
故④正确;
∴小青计算后得到如上结论,其中正确的是:①③④,
故答案为:①③④.
8.(2021•黔西南州)如图,热气球的探测器显示,从热气球底部A处看一栋楼顶部的俯角为30°,看这栋楼底部的俯角为60°,热气球A处与地面距离为150m,则这栋楼的高度是 100 m.
【解答】解:如图,过A作AH⊥BC,交CB的延长线于点H,
在Rt△ACD中,
∵∠CAD=30°,AD=150m,
∴CD=AD•tan30°=150×=50(m),
∴AH=CD=50m.
在Rt△ABH中,
∵∠BAH=30°,AH=50m,
∴BH=AH•tan30°=50×=50(m),
∴BC=AD﹣BH=150﹣50=100(m),
答:这栋楼的高度为100m.
故答案为:100.
9.(2021•遵义)小明用一块含有60°(∠DAE=60°)的直角三角尺测量校园内某棵树的高度,示意图如图所示,若小明的眼睛与地面之间的垂直高度AB为1.62m,小明与树之间的水平距离BC为4m,则这棵树的高度约为 8.5 m.(结果精确到0.1m,参考数据:≈1.73)
【解答】解:∵AB⊥BC,DC⊥BC,AD∥BC,
∴四边形ABCD是矩形,
∵BC=4m,AB=1.62m,
∴AD=BC=4m,DC=AB=1.62m,
Rt△AED中,∵∠DAE=60°,AD=4m,
∴ED=AD•tan60°=4×=4(m),
∴CE=ED+DC=4+1.62≈8.5(m)
答:这棵树的高度约为8.5m.
故答案为:8.5.
10.(2020•黔南州)如图所示,在四边形ABCD中,∠B=90°,AB=2,CD=8.连接AC,AC⊥CD,若sin∠ACB=,则AD长度是 10 .
【解答】解:在Rt△ABC中,
∵AB=2,sin∠ACB==,
∴AC=2÷=6.
在Rt△ADC中,
AD=
=
=10.
故答案为:10.
11.(2020•黔东南州)cos60°= .
【解答】解:cos60°=.
故答案为:.
三.解答题(共11小题)
12.(2022•六盘水)“五一”节期间,许多露营爱好者在我市郊区露营,为遮阳和防雨会搭建一种“天幕”,其截面示意图是轴对称图形,对称轴是垂直于地面的支杆AB,用绳子拉直AD后系在树干EF上的点E处,使得A,D,E在一条直线上,通过调节点E的高度可控制“天幕”的开合,AC=AD=2m,BF=3m.
(1)天晴时打开“天幕”,若∠α=65°,求遮阳宽度CD(结果精确到0.1m);
(2)下雨时收拢“天幕”,∠α从65°减少到45°,求点E下降的高度(结果精确到0.1m).
(参考数据:sin65°≈0.90,cos65°≈0.42,tan65°≈2.14,≈1.41)
【解答】解:(1)由对称知,CD=2OD,AD=AC=2m,∠AOD=90°,
在Rt△AOD中,∠OAD=α=65°,
∴sinα=,
∴OD=AD•sinα=2×sin65°≈2×0.90=1.80m,
∴CD=2OD=3.6m,
答:遮阳宽度CD约为3.6米;
(2)如图,
过点E作EH⊥AB于H,
∴∠BHE=90°,
∵AB⊥BF,EF⊥BF,
∴∠ABF=∠EFB=90°,
∴∠ABF=∠EFB=∠BHE=90°,
∴EH=BF=3m,
在Rt△AHE中,tana=,
∴AH=,
当∠α=65°时,AH=≈≈1.40m,
当∠α=45°时,AH==3,
∴当∠α从65°减少到45°时,点E下降的高度约为3﹣1.40=1.6m.
13.(2022•安顺)随着我国科学技术的不断发展,5G移动通信技术日趋完善,某市政府为了实现5G网络全覆盖,2021~2025年拟建设5G基站3000个,如图,在斜坡CB上有一建成的5G基站塔AB,小明在坡脚C处测得塔顶A的仰角为45°,然后他沿坡面CB行走了50米到达D处,D处离地平面的距离为30米且在D处测得塔顶A的仰角53°.(点A、B、C、D、E均在同一平面内,CE为地平线)(参考数据:sin53°≈,cos53°≈,tan53°≈)
(1)求坡面CB的坡度;
(2)求基站塔AB的高.
【解答】解:(1)如图,过点D作AB的垂线,交AB的延长线于点F,过点D作DM⊥CE,垂足为M.
由题意可知:CD=50米,DM=30米.
在Rt△CDM中,由勾股定理得:CM2=CD2﹣DM2,
∴CM=40米,
∴斜坡CB的坡度=DM:CM=3:4;
(2)设DF=4a米,则MN=4a米,BF=3a米,
∵∠ACN=45°,
∴∠CAN=∠ACN=45°,
∴AN=CN=(40+4a)米,
∴AF=AN﹣NF=AN﹣DM=40+4a﹣30=(10+4a)米.
在Rt△ADF中,
∵DF=4a米,AF=(10+4a)米,∠ADF=53°,
∴tan∠ADF=,
∴=,
∴解得a=,
∴AF=10+4a=10+30=40(米),
∵BF=3a=米,
∴AB=AF﹣BF=40﹣=(米).
答:基站塔AB的高为米.
14.(2022•贵阳)交通安全心系千万家,高速公路管理局在某隧道内安装了测速仪,如图所示的是该段隧道的截面示意图.测速仪C和测速仪E到路面之间的距离CD=EF=7m,测速仪C和E之间的距离CE=750m,一辆小汽车在水平的公路上由西向东匀速行驶,在测速仪C处测得小汽车在隧道入口A点的俯角为25°,在测速仪E处测得小汽车在B点的俯角为60°,小汽车在隧道中从点A行驶到点B所用的时间为38s(图中所有点都在同一平面内).
(1)求A,B两点之间的距离(结果精确到1m);
(2)若该隧道限速22m/s,判断小汽车从点A行驶到点B是否超速?通过计算说明理由.
(参考数据:≈1.7,sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)
【解答】解:(1)由题意得:
∠CAD=25°,∠EBF=60°,CE=DF=750米,
在Rt△ACD中,CD=7米,
∴AD=≈=14(米),
在Rt△BEF中,EF=7米,
∴BF==≈4.1(米),
∴AB=AD+DF﹣BF=14+750﹣4.1≈760(米),
∴A,B两点之间的距离约为760米;
(2)小汽车从点A行驶到点B没有超速,
理由:由题意得:
760÷38=20米/秒,
∵20米/秒<22米/秒,
∴小汽车从点A行驶到点B没有超速.
15.(2022•铜仁市)为了测量高速公路某桥的桥墩高度,某数学兴趣小组在同一水平地面C、D两处实地测量,如图所示.在C处测得桥墩顶部A处的仰角为60°和桥墩底部B处的俯角为40°,在D处测得桥墩顶部A处的仰角为30°,测得C、D两点之间的距离为80m,直线AB、CD在同一平面内,请你用以上数据,计算桥墩AB的高度.(结果保留整数,参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,≈1.73)
【解答】解:延长DC交AB于点E,
则DE⊥AB,
设CE=x米,
在Rt△AEC中,∠ACE=60°,
∴AE=EC•tan60°=(米),
在Rt△BEC中,∠BCE=40°,
∴BE=EC•tan40°=0.84x(米),
在Rt△AED中,∠D=30°,
∴DE===3x(米),
∵CD=80米
∴DE﹣CE=CD,
∴3x﹣x=80,
∴x=40,
∴AB=AE+BE≈40×(1.73+0.84)=102.8≈103米,
∴桥墩AB的高度为103米.
16.(2022•遵义)如图1所示是一种太阳能路灯,它由灯杆和灯管支架两部分构成.如图2,AB是灯杆,CD是灯管支架,灯管支架CD与灯杆间的夹角∠BDC=60°.综合实践小组的同学想知道灯管支架CD的长度,他们在地面的点E处测得灯管支架底部D的仰角为60°,在点F处测得灯管支架顶部C的仰角为30°,测得AE=3m,EF=8m(A,E,F在同一条直线上).根据以上数据,解答下列问题:
(1)求灯管支架底部距地面高度AD的长(结果保留根号);
(2)求灯管支架CD的长度(结果精确到0.1m,参考数据:≈1.73).
【解答】解:(1)在Rt△DAE中,∠AED=60°,AE=3m,
∴AD=AE•tan60°=3(米),
∴灯管支架底部距地面高度AD的长为3米;
(2)延长FC交AB于点G,
∵∠DAE=90°,∠AFC=30°,
∴∠DGC=90°﹣∠AFC=60°,
∵∠GDC=60°,
∴∠DCG=180°﹣∠GDC﹣∠DGC=60°,
∴△DGC是等边三角形,
∴DC=DG,
∵AE=3米,EF=8米,
∴AF=AE+EF=11(米),
在Rt△AFG中,AG=AF•tan30°=11×=(米),
∴DC=DG=AG﹣AD=﹣3=≈1.2(米),
∴灯管支架CD的长度约为1.2米.
17.(2022•黔东南州)(1)计算:(﹣1)﹣3++|2﹣|+(﹣1.57)0﹣;
(2)先化简,再求值:÷﹣(+1),其中x=cos60°.
【解答】解:(1)原式=+2+(﹣2)+1﹣2
=﹣1+2+﹣2+1﹣2
=;
(2)原式=
=
=,
把x=cos60°=代入上式,
原式==﹣2.
18.(2021•铜仁市)如图,在一座山的前方有一栋住宅,已知山高AB=120m,楼高CD=99m,某天上午9时太阳光线从山顶点A处照射到住宅的点E外.在点A处测得点E的俯角∠EAM=45°,上午10时太阳光线从山顶点A处照射到住宅点F处,在点A处测得点F的俯角∠FAM=60°,已知每层楼的高度为3m,EF=40m,问:以当天测量数据为依据,不考虑季节天气变化,至少要买该住宅的第几层楼,才能使上午10时太阳光线照射到该层楼的外墙?(≈1.73)
【解答】解:根据题意可知:
四边形ABDM是矩形,
∴AB=MD=120m,
在Rt△AME中,ME=AMtan45°=AM,
在Rt△AMF中,MF=AMtan60°=AM,
∵EF=MF﹣ME=40m,
∴AM﹣AM=40,
∴AM≈54.8(m),
∴MF≈54.8×1.73≈94.80(m),
∴DF=120﹣94.80=25.2(m),
25.2÷3≈8.4,
∴至少要买该住宅的第9层楼,才能使上午10时太阳光线照射到该层楼的外墙.
答:至少要买该住宅的第9层楼,才能使上午10时太阳光线照射到该层楼的外墙.
19.(2021•安顺)随着科学技术的不断进步,无人机被广泛应用到实际生活中,小星利用无人机来测量广场B,C两点之间的距离.如图所示,小星站在广场的B处遥控无人机,无人机在A处距离地面的飞行高度是41.6m,此时从无人机测得广场C处的俯角为63°,他抬头仰视无人机时,仰角为α,若小星的身高BE=1.6m,EA=50m(点A,E,B,C在同一平面内).
(1)求仰角α的正弦值;
(2)求B,C两点之间的距离(结果精确到1m).
(sin63°≈0.89,cos63°≈0.45,tan63°≈1.96,sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)
【解答】解:(1)如图,过A点作AD⊥BC于D,过E点作EF⊥AD于F,
∵∠EBD=∠FDB=∠DFE=90°,
∴四边形BDFE为矩形,
∴EF=BD,DF=BE=1.6m,
∴AF=AD﹣DF=41.6﹣1.6=40(m),
在Rt△AEF中,sin∠AEF===,
即sinα=.
答:仰角α的正弦值为;
(2)在Rt△AEF中,EF===30(m),
在Rt△ACD中,∠ACD=63°,AD=41.6m,
∵tan∠ACD=,
∴CD==≈21.22(m),
∴BC=BD+CD=30+21.22≈51(m).
答:B,C两点之间的距离约为51m.
20.(2020•贵阳)脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,为了测量房屋的高度,在地面上C点测得屋顶A的仰角为35°,此时地面上C点、屋檐上E点、屋顶上A点三点恰好共线,继续向房屋方向走8m到达点D时,又测得屋檐E点的仰角为60°,房屋的顶层横梁EF=12m,EF∥CB,AB交EF于点G(点C,D,B在同一水平线上).(参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,≈1.7)
(1)求屋顶到横梁的距离AG;
(2)求房屋的高AB(结果精确到1m).
【解答】解:(1)∵房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,EF∥BC,
∴AG⊥EF,EG=EF,∠AEG=∠ACB=35°,
在Rt△AGE中,∠AGE=90°,∠AEG=35°,
∵tan∠AEG=tan35°=,EG=6,
∴AG=6×0.7=4.2(米);
答:屋顶到横梁的距离AG约为4.2米;
(2)过E作EH⊥CB于H,
设EH=x,
在Rt△EDH中,∠EHD=90°,∠EDH=60°,
∵tan∠EDH=,
∴DH=,
在Rt△ECH中,∠EHC=90°,∠ECH=35°,
∵tan∠ECH=,
∴CH=,
∵CH﹣DH=CD=8,
∴﹣=8,
解得:x≈9.52,
∴AB=AG+BG=13.72≈14(米),
答:房屋的高AB约为14米.
21.(2020•铜仁市)如图,一艘船由西向东航行,在A处测得北偏东60°方向上有一座灯塔C,再向东继续航行60km到达B处,这时测得灯塔C在北偏东30°方向上,已知在灯塔C的周围47km内有暗礁,问这艘船继续向东航行是否安全?
【解答】解:过点C作CD⊥AB,垂足为D.如图所示:
根据题意可知∠BAC=90°﹣60°=30°,∠DBC=90°﹣30°=60°,
∵∠DBC=∠ACB+∠BAC,
∴∠BAC=30°=∠ACB,
∴BC=AB=60km,
在Rt△BCD中,∠CDB=90°,∠DBC=60°,sin∠DBC=,
∴sin60°=,
∴CD=60×sin60°=60×=30(km)>47km,
∴这艘船继续向东航行安全.
22.(2020•遵义)某校为检测师生体温,在校门安装了某型号测温门.如图为该测温门截面示意图,已知测温门AD的顶部A处距地面高为2.2m,为了解自己的有效测温区间.身高1.6m的小聪做了如下实验:当他在地面N处时测温门开始显示额头温度,此时在额头B处测得A的仰角为18°;在地面M处时,测温门停止显示额头温度,此时在额头C处测得A的仰角为60°.求小聪在地面的有效测温区间MN的长度.(额头到地面的距离以身高计,计算精确到0.1m,sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)
【解答】解:延长BC交AD于点E,则AE=AD﹣DE=0.6m.
BE=≈1.875m,CE=≈0.346m.
所以BC=BE﹣CE≈1.529m.
所以MN=BC≈1.5m.
答:小聪在地面的有效测温区间MN的长度约为1.5m.
相关试卷
这是一份第29章+投影与视图-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州),共13页。
这是一份第27章+相似-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州),共13页。
这是一份第26章+反比例函数-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州),共29页。