搜索
    上传资料 赚现金
    英语朗读宝

    第24章圆-【人教版-中考真题】九年级数学上学期期末复习培优练习(贵州)

    第24章圆-【人教版-中考真题】九年级数学上学期期末复习培优练习(贵州)第1页
    第24章圆-【人教版-中考真题】九年级数学上学期期末复习培优练习(贵州)第2页
    第24章圆-【人教版-中考真题】九年级数学上学期期末复习培优练习(贵州)第3页
    还剩33页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第24章圆-【人教版-中考真题】九年级数学上学期期末复习培优练习(贵州)

    展开

    这是一份第24章圆-【人教版-中考真题】九年级数学上学期期末复习培优练习(贵州),共36页。
    第24章圆-【人教版-中考真题】九年级数学上学期期末复习培优练习(贵州)
    一.选择题(共15小题)
    1.(2022•六盘水)如图是“光盘行动”的宣传海报,图中餐盘与筷子可看成直线和圆的位置关系是(  )

    A.相切 B.相交 C.相离 D.平行
    2.(2022•安顺)如图,在平面直角坐标系中,将边长为2的正六边形OABCDE绕点O顺时针旋转n个45°,得到正六边形OAnBn∁nDnEn,当n=2022时,正六边形OAnBn∁nDnEn的顶点Dn的坐标是(  )

    A.(﹣,﹣3) B.(﹣3,﹣) C.(3,﹣) D.(﹣,3)
    3.(2022•安顺)如图,边长为的正方形ABCD内接于⊙O,PA,PD分别与⊙O相切于点A和点D,PD的延长线与BC的延长线交于点E,则图中阴影部分的面积为(  )

    A.5﹣π B.5﹣ C.﹣ D.﹣
    4.(2022•贵阳)如图,已知∠ABC=60°,点D为BA边上一点,BD=10,点O为线段BD的中点,以点O为圆心,线段OB长为半径作弧,交BC于点E,连接DE,则BE的长是(  )

    A.5 B.5 C.5 D.5
    5.(2022•铜仁市)如图,OA,OB是⊙O的两条半径,点C在⊙O上,若∠AOB=80°,则∠C的度数为(  )

    A.30° B.40° C.50° D.60°
    6.(2022•铜仁市)如图,在边长为6的正方形ABCD中,以BC为直径画半圆,则阴影部分的面积是(  )

    A.9 B.6 C.3 D.12
    7.(2022•遵义)如图,在正方形ABCD中,AC和BD交于点O,过点O的直线EF交AB于点E(E不与A,B重合),交CD于点F.以点O为圆心,OC为半径的圆交直线EF于点M,N.若AB=1,则图中阴影部分的面积为(  )

    A.﹣ B.﹣ C.﹣ D.﹣
    8.(2022•毕节市)如图,一件扇形艺术品完全打开后,AB,AC夹角为120°,AB的长为45cm,扇面BD的长为30cm,则扇面的面积是(  )

    A.375πcm2 B.450πcm2 C.600πcm2 D.750πcm2
    9.(2021•黔西南州)图1是一把扇形书法纸扇,图2是其完全打开后的示意图,外侧两竹条OA和OB的夹角为150°,OA的长为30cm,贴纸部分的宽AC为18cm,则的长为(  )

    A.5πcm B.10πcm C.20πcm D.25πcm
    10.(2021•遵义)如图,AB是⊙O的弦,等边三角形OCD的边CD与⊙O相切于点P,且CD∥AB,连接OA,OB,OP,AD.若∠COD+∠AOB=180°,AB=6,则AD的长是(  )

    A.6 B.3 C.2 D.
    11.(2021•毕节市)某小区内的消防车道有一段弯道,如图,弯道的内外边缘均为圆弧,,所在圆的圆心为O,点C,D分别在OA,OB上.已知消防车道半径OC=12m,消防车道宽AC=4m,∠AOB=120°,则弯道外边缘的长为(  )

    A.8πm B.4πm C.πm D.πm
    12.(2021•安顺)如图,⊙O与正五边形ABCDE的两边AE,CD相切于A,C两点,则∠AOC的度数是(  )

    A.144° B.130° C.129° D.108°
    13.(2020•毕节市)如图,已知点C,D是以AB为直径的半圆的三等分点,弧CD的长为π,则图中阴影部分的面积为(  )

    A.π B.π C.π D.π+
    14.(2020•黔东南州)如图,正方形ABCD的边长为2,O为对角线的交点,点E、F分别为BC、AD的中点.以C为圆心,2为半径作圆弧,再分别以E、F为圆心,1为半径作圆弧、,则图中阴影部分的面积为(  )

    A.π﹣1 B.π﹣2 C.π﹣3 D.4﹣π
    15.(2020•黔东南州)如图,⊙O的直径CD=20,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AB的长为(  )

    A.8 B.12 C.16 D.2
    二.填空题(共7小题)
    16.(2022•黔西南州)如图,边长为4的正方形ABCD的对角线交于点O,以OC为半径的扇形的圆心角∠FOH=90°.则图中阴影部分面积是    .

    17.(2022•黔东南州)如图,在△ABC中,∠A=80°,半径为3cm的⊙O是△ABC的内切圆,连接OB、OC,则图中阴影部分的面积是    cm2.(结果用含π的式子表示)

    18.(2021•黔东南州)如图,要用一个扇形纸片围成一个无底盖的圆锥(接缝处忽略不计),若该圆锥的底面圆周长为20πcm,侧面积为240πcm2,则这个扇形的圆心角的度数是    度.

    19.(2021•黔东南州)小明很喜欢钻研问题,一次数学杨老师拿来一个残缺的圆形瓦片(如图所示)让小明求瓦片所在圆的半径,小明连接瓦片弧线两端AB,量得弧AB的中心C到AB的距离CD=1.6cm,AB=6.4cm,很快求得圆形瓦片所在圆的半径为    cm.

    20.(2020•贵阳)如图,△ABC是⊙O的内接正三角形,点O是圆心,点D,E分别在边AC,AB上,若DA=EB,则∠DOE的度数是   度.

    21.(2020•遵义)如图,⊙O是△ABC的外接圆,∠BAC=45°,AD⊥BC于点D,延长AD交⊙O于点E,若BD=4,CD=1,则DE的长是   .

    22.(2020•黔西南州)如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为   .

    三.解答题(共7小题)
    23.(2022•六盘水)牂牁江“余月郎山,西陵晚渡”的风景描绘中有半个月亮挂在山上,月亮之上有个“齐天大圣”守护洞口的传说.真实情况是老王山上有个月亮洞,洞顶上经常有猴子爬来爬去,如图是月亮洞的截面示意图.
    (1)科考队测量出月亮洞的洞宽CD约是28m,洞高AB约是12m,通过计算截面所在圆的半径可以解释月亮洞像半个月亮,求半径OC的长(结果精确到0.1m);
    (2)若∠COD=162°,点M在上,求∠CMD的度数,并用数学知识解释为什么“齐天大圣”点M在洞顶上巡视时总能看清洞口CD的情况.

    24.(2022•黔西南州)如图,在△ABC中,AB=AC,以AB为直径作⊙O,分别交BC于点D,交AC于点E,DH⊥AC,垂足为H,连接DE并延长交BA的延长线于点F.
    (1)求证:DH是⊙O的切线;
    (2)若E为AH的中点,求的值.

    25.(2021•毕节市)如图,⊙O是△ABC的外接圆,点E是△ABC的内心,AE的延长线交BC于点F,交⊙O于点D,连接BD,BE.
    (1)求证:DB=DE;
    (2)若AE=3,DF=4,求DB的长.

    26.(2021•铜仁市)如图,已知△ABC内接于⊙O,AB是⊙O的直径,∠CAB的平分线交BC于点D,交⊙O于点E,连接EB,作∠BEF=∠CAE,交AB的延长线于点F.
    (1)求证:EF是⊙O的切线;
    (2)若BF=10,EF=20,求⊙O的半径和AD的长.

    27.(2021•安顺)如图,在⊙O中,AC为⊙O的直径,AB为⊙O的弦,点E是的中点,过点E作AB的垂线,交AB于点M,交⊙O于点N,分别连接EB,CN.
    (1)EM与BE的数量关系是    ;
    (2)求证:=;
    (3)若AM=,MB=1,求阴影部分图形的面积.

    28.(2020•铜仁市)如图,AB是⊙O的直径,C为⊙O上一点,连接AC,CE⊥AB于点E,D是直径AB延长线上一点,且∠BCE=∠BCD.
    (1)求证:CD是⊙O的切线;
    (2)若AD=8,=,求CD的长.

    29.(2020•遵义)如图,AB是⊙O的直径,点C是⊙O上一点,∠CAB的平分线AD交于点D,过点D作DE∥BC交AC的延长线于点E.
    (1)求证:DE是⊙O的切线;
    (2)过点D作DF⊥AB于点F,连接BD.若OF=1,BF=2,求BD的长度.


    第24章圆-【人教版-中考真题】九年级数学上学期期末复习培优练习(贵州)
    参考答案与试题解析
    一.选择题(共15小题)
    1.(2022•六盘水)如图是“光盘行动”的宣传海报,图中餐盘与筷子可看成直线和圆的位置关系是(  )

    A.相切 B.相交 C.相离 D.平行
    【解答】解:根据直线与圆的位置关系可得,图中餐盘与筷子可看成直线和圆的位置关系相交,
    故选:B.
    2.(2022•安顺)如图,在平面直角坐标系中,将边长为2的正六边形OABCDE绕点O顺时针旋转n个45°,得到正六边形OAnBn∁nDnEn,当n=2022时,正六边形OAnBn∁nDnEn的顶点Dn的坐标是(  )

    A.(﹣,﹣3) B.(﹣3,﹣) C.(3,﹣) D.(﹣,3)
    【解答】解:由题意旋转8次应该循环,
    ∵2022÷8=252…6,
    ∴Dn的坐标与D6的坐标相同,
    如图,过点D6H⊥OE于点H,

    ∵∠DOD6=90°,∠DOE=30°,OD=OD6=2,
    ∴OH=OD6•cos60°=,HD6=OH=3,
    ∴D6(﹣,﹣3),
    ∴顶点Dn的坐标是(﹣,﹣3),
    故选:A.
    3.(2022•安顺)如图,边长为的正方形ABCD内接于⊙O,PA,PD分别与⊙O相切于点A和点D,PD的延长线与BC的延长线交于点E,则图中阴影部分的面积为(  )

    A.5﹣π B.5﹣ C.﹣ D.﹣
    【解答】解:连接AC,OD,
    ∵四边形ABCD是正方形,
    ∴∠B=90°,
    ∴AC是⊙O的直径,∠AOD=90°,
    ∵PA,PD分别与⊙O相切于点A和点D,
    ∴∠PAO=∠PDO=90°,
    ∴四边形AODP是矩形,
    ∵OA=OD,
    ∴矩形AODP是正方形,
    ∴∠P=90°,AP=AO,AC∥PE,
    ∴∠E=∠ACB=45°,
    ∴△CDE是等腰直角三角形,
    ∵AB=,
    ∴AC=2AO=2,DE=CD=2,
    ∴AP=PD=AO=1,
    ∴PE=3,
    ∴图中阴影部分的面积=(AC+PE)•AP﹣AO2•π=(2+3)×1﹣×12•π=(5﹣π)=﹣,
    故选:C.

    4.(2022•贵阳)如图,已知∠ABC=60°,点D为BA边上一点,BD=10,点O为线段BD的中点,以点O为圆心,线段OB长为半径作弧,交BC于点E,连接DE,则BE的长是(  )

    A.5 B.5 C.5 D.5
    【解答】解:连接OE,
    由已知可得,OE=OB=BD=5,
    ∵∠ABC=60°,
    ∴△BOE是等边三角形,
    ∴BE=OB=5,
    故选:A.

    5.(2022•铜仁市)如图,OA,OB是⊙O的两条半径,点C在⊙O上,若∠AOB=80°,则∠C的度数为(  )

    A.30° B.40° C.50° D.60°
    【解答】解:∵OA,OB是⊙O的两条半径,点C在⊙O上,∠AOB=80°,
    ∴∠C==40°.
    故选:B.
    6.(2022•铜仁市)如图,在边长为6的正方形ABCD中,以BC为直径画半圆,则阴影部分的面积是(  )

    A.9 B.6 C.3 D.12
    【解答】解:设AC与半圆交于点E,半圆的圆心为O,连接BE,OE,

    ∵四边形ABCD是正方形,
    ∴∠OCE=45°,
    ∵OE=OC,
    ∴∠OEC=∠OCE=45°,
    ∴∠EOC=90°,
    ∴OE垂直平分BC,
    ∴BE=CE,
    ∴弓形BE的面积=弓形CE的面积,
    ∴,
    故选:A.
    7.(2022•遵义)如图,在正方形ABCD中,AC和BD交于点O,过点O的直线EF交AB于点E(E不与A,B重合),交CD于点F.以点O为圆心,OC为半径的圆交直线EF于点M,N.若AB=1,则图中阴影部分的面积为(  )

    A.﹣ B.﹣ C.﹣ D.﹣
    【解答】解:以OD为半径作弧DN,
    ∵四边形ABCD是正方形,
    ∴OB=OD=OC,∠DOC=90°,
    ∵∠EOB=∠FOD,
    ∴S扇形BOM=S扇形DON,
    ∴S阴影=S扇形DOC﹣S△DOC=﹣×1×1=﹣,
    故选:B.

    8.(2022•毕节市)如图,一件扇形艺术品完全打开后,AB,AC夹角为120°,AB的长为45cm,扇面BD的长为30cm,则扇面的面积是(  )

    A.375πcm2 B.450πcm2 C.600πcm2 D.750πcm2
    【解答】解:∵AB的长是45cm,扇面BD的长为30cm,
    ∴AD=AB﹣BD=15cm,
    ∵∠BAC=120°,
    ∴扇面的面积S=S扇形BAC﹣S扇形DAE
    =﹣
    =600π(cm2),
    故选:C.
    9.(2021•黔西南州)图1是一把扇形书法纸扇,图2是其完全打开后的示意图,外侧两竹条OA和OB的夹角为150°,OA的长为30cm,贴纸部分的宽AC为18cm,则的长为(  )

    A.5πcm B.10πcm C.20πcm D.25πcm
    【解答】解:∵OA的长为30cm,贴纸部分的宽AC为18cm,
    ∴OC=OA﹣AC=12cm,
    又OA和OB的夹角为150°,
    ∴的长为:=10π(cm).
    故选:B.
    10.(2021•遵义)如图,AB是⊙O的弦,等边三角形OCD的边CD与⊙O相切于点P,且CD∥AB,连接OA,OB,OP,AD.若∠COD+∠AOB=180°,AB=6,则AD的长是(  )

    A.6 B.3 C.2 D.
    【解答】解:如图,延长PO交AB于H,连接AP,BP,过点A作AE⊥CD,交DC的延长线于E,

    ∵CD与⊙O相切于点P,
    ∴OP⊥CD,
    又∵△COD是等边三角形,
    ∴∠COD=60°=∠OCD,CP=PD,
    ∵CD∥AB,
    ∴OH⊥AB,
    ∴AH=BH=3,
    ∵∠COD+∠AOB=180°,
    ∴∠AOB=120°,
    ∵OA=OB,
    ∴∠OAB=∠OBA=30°,
    ∴AO=2OH,AH=OH=3,
    ∴OH=,AO=2=OB=OP,
    ∵sin∠OCD==,
    ∴OC=4,
    ∴CP=PD=2,
    ∵AH=BH,PH⊥AB,
    ∴AP=BP,
    ∵∠AOB=2∠APB,
    ∴∠APB=60°,
    ∴△APB是等边三角形,
    ∴AP=BP=6,∠APH=30°,
    ∴∠APE=60°,
    ∴∠EAP=30°,
    ∴EP=AP=3,AE=EP=3,
    ∴ED=EP+PD=5,
    ∴AD===2,
    故选:C.
    11.(2021•毕节市)某小区内的消防车道有一段弯道,如图,弯道的内外边缘均为圆弧,,所在圆的圆心为O,点C,D分别在OA,OB上.已知消防车道半径OC=12m,消防车道宽AC=4m,∠AOB=120°,则弯道外边缘的长为(  )

    A.8πm B.4πm C.πm D.πm
    【解答】解:∵OC=12m,AC=4m,
    ∴OA=OC+AC=12+4=16(m),
    ∵∠AOB=120°,
    ∴弯道外边缘的长为:=(m),
    故选:C.
    12.(2021•安顺)如图,⊙O与正五边形ABCDE的两边AE,CD相切于A,C两点,则∠AOC的度数是(  )

    A.144° B.130° C.129° D.108°
    【解答】解:正五边形的内角=(5﹣2)×180°÷5=108°,
    ∴∠E=∠D=108°,
    ∵AE、CD分别与⊙O相切于A、C两点,
    ∴∠OAE=∠OCD=90°,
    ∴∠AOC=540°﹣90°﹣90°﹣108°﹣108°=144°,
    故选:A.
    13.(2020•毕节市)如图,已知点C,D是以AB为直径的半圆的三等分点,弧CD的长为π,则图中阴影部分的面积为(  )

    A.π B.π C.π D.π+
    【解答】解:连接CD、OC、OD.
    ∵C,D是以AB为直径的半圆的三等分点,
    ∴∠AOC=∠COD=∠DOB=60°,AC=CD,
    又∵OA=OC=OD,
    ∴△OAC、△OCD是等边三角形,
    ∴∠AOC=∠OCD,
    ∴CD∥AB,
    ∴S△ACD=S△OCD,
    ∵弧CD的长为,
    ∴=,
    解得:r=1,
    ∴S阴影=S扇形OCD==.
    故选:A.

    14.(2020•黔东南州)如图,正方形ABCD的边长为2,O为对角线的交点,点E、F分别为BC、AD的中点.以C为圆心,2为半径作圆弧,再分别以E、F为圆心,1为半径作圆弧、,则图中阴影部分的面积为(  )

    A.π﹣1 B.π﹣2 C.π﹣3 D.4﹣π
    【解答】解:由题意可得,阴影部分的面积是:•π×22﹣﹣2(1×1﹣•π×12)=π﹣2,
    解法二:连接BD,由题意,S阴影=S扇形CBD﹣S△BCD=×π×22﹣×2×2=π﹣2,

    故选:B.
    15.(2020•黔东南州)如图,⊙O的直径CD=20,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AB的长为(  )

    A.8 B.12 C.16 D.2
    【解答】解:连接OA,
    ∵⊙O的直径CD=20,OM:OC=3:5,
    ∴OC=10,OM=6,
    ∵AB⊥CD,
    ∴AM===8,
    ∴AB=2AM=16.
    故选:C.

    二.填空题(共7小题)
    16.(2022•黔西南州)如图,边长为4的正方形ABCD的对角线交于点O,以OC为半径的扇形的圆心角∠FOH=90°.则图中阴影部分面积是  2π﹣4 .

    【解答】解:如图,∵四边形ABCD是正方形,
    ∴AC⊥BD,OA=OC=OB=OD,∠OBE=∠OCG=45°,S△OBC=S四边形ABCD=4,
    ∵∠BOC=∠EOG=90°,
    ∴∠BOE=∠COG,
    在△BOE和△COG中,

    ∴△OBE≌△OCG(SAS),
    ∴S△OBE=S△OCG,
    ∴S四边形OECG=S△OBC=4,
    ∵△OBC是等腰直角三角形,BC=4,
    ∴OB=OC=2,
    ∴S阴=S扇形OFH﹣S四边形OECG
    =﹣4
    =2π﹣4,
    故答案为:2π﹣4.
    17.(2022•黔东南州)如图,在△ABC中,∠A=80°,半径为3cm的⊙O是△ABC的内切圆,连接OB、OC,则图中阴影部分的面积是   cm2.(结果用含π的式子表示)

    【解答】解:∵∠A=80°,⊙O是△ABC的内切圆,
    ∴∠DOE=180°﹣()=180°﹣(180°﹣∠A)=130°,
    ∴S扇形DOE==(cm2),
    故答案为:.
    18.(2021•黔东南州)如图,要用一个扇形纸片围成一个无底盖的圆锥(接缝处忽略不计),若该圆锥的底面圆周长为20πcm,侧面积为240πcm2,则这个扇形的圆心角的度数是  150 度.

    【解答】解:设圆锥的母线长为lcm,扇形的圆心角为n°,
    ∵圆锥的底面圆周长为20πcm,
    ∴圆锥的侧面展开图扇形的弧长为20πcm,
    由题意得:×20π×l=240π,
    解得:l=24,
    则=20π,
    解得,n=150,即扇形的圆心角为150°,
    故答案为:150.
    19.(2021•黔东南州)小明很喜欢钻研问题,一次数学杨老师拿来一个残缺的圆形瓦片(如图所示)让小明求瓦片所在圆的半径,小明连接瓦片弧线两端AB,量得弧AB的中心C到AB的距离CD=1.6cm,AB=6.4cm,很快求得圆形瓦片所在圆的半径为  4 cm.

    【解答】解:∵C点是的中点,CD⊥AB,
    ∴CD过圆心,AD=BD=AB=×6.4=3.2(cm),
    设圆心为O,连接OA,如图,
    设⊙O的半径为Rcm,则OD=(R﹣1.6)cm,
    在Rt△OAD中,(R﹣1.6)2+3.22=R2,解得R=4(cm),
    所以圆形瓦片所在圆的半径为4cm.
    故答案为4.

    20.(2020•贵阳)如图,△ABC是⊙O的内接正三角形,点O是圆心,点D,E分别在边AC,AB上,若DA=EB,则∠DOE的度数是 120 度.

    【解答】解:连接OA,OB,
    ∵△ABC是⊙O的内接正三角形,
    ∴∠AOB=120°,
    ∵OA=OB,
    ∴∠OAB=∠OBA=30°,
    ∵∠CAB=60°,
    ∴∠OAD=30°,
    ∴∠OAD=∠OBE,
    ∵AD=BE,
    ∴△OAD≌△OBE(SAS),
    ∴∠DOA=∠BOE,
    ∴∠DOE=∠DOA+∠AOE=∠AOE+∠BOE=∠AOB=120°,
    故答案为:120.

    21.(2020•遵义)如图,⊙O是△ABC的外接圆,∠BAC=45°,AD⊥BC于点D,延长AD交⊙O于点E,若BD=4,CD=1,则DE的长是  .

    【解答】解:连接OB,OC,OA,过O点作OF⊥BC于F,作OG⊥AE于G,
    ∵⊙O是△ABC的外接圆,∠BAC=45°,
    ∴∠BOC=90°,
    ∵BD=4,CD=1,
    ∴BC=4+1=5,
    ∴OB=OC=,
    ∴OA=,OF=BF=,
    ∴DF=BD﹣BF=,
    ∴OG=,GD=,
    解法一:在Rt△AGO中,AG==,
    ∴GE=,
    ∴DE=GE﹣GD=.
    解法二:在Rt△AGO中,AG==,
    ∴AD=AG+GD=,
    ∵AD×DE=BD×CD,
    ∴DE==.
    故答案为:.

    22.(2020•黔西南州)如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为 ﹣ .

    【解答】解:连接CD,
    ∵CA=CB,∠ACB=90°,
    ∴∠B=45°,
    ∵点D为AB的中点,
    ∴DC=AB=BD=1,CD⊥AB,∠DCA=45°,
    ∴∠CDH=∠BDG,∠DCH=∠B,
    在△DCH和△DBG中,

    ∴△DCH≌△DBG(ASA),
    ∴S四边形DGCH=S△BDC=S△ABC=AB•CD=×2×1=.
    ∴S阴影=S扇形DEF﹣S△BDC=﹣=﹣.
    故答案为﹣.

    三.解答题(共7小题)
    23.(2022•六盘水)牂牁江“余月郎山,西陵晚渡”的风景描绘中有半个月亮挂在山上,月亮之上有个“齐天大圣”守护洞口的传说.真实情况是老王山上有个月亮洞,洞顶上经常有猴子爬来爬去,如图是月亮洞的截面示意图.
    (1)科考队测量出月亮洞的洞宽CD约是28m,洞高AB约是12m,通过计算截面所在圆的半径可以解释月亮洞像半个月亮,求半径OC的长(结果精确到0.1m);
    (2)若∠COD=162°,点M在上,求∠CMD的度数,并用数学知识解释为什么“齐天大圣”点M在洞顶上巡视时总能看清洞口CD的情况.

    【解答】解:(1)设OA=OC=Rm,
    ∵OA⊥CD,
    ∴CB=BD=CD=14m,
    在Rt△COB中,OC2=OB2+CB2,
    ∴R2=142+(R﹣12)2,
    ∴R=,
    ∴OC=≈14.2m.

    (2)补全⊙O,在CD的下方取一点N,连接CN,DN,CM,DM,
    ∵∠N=∠COD=81°,
    ∵∠CMD+∠N=180°,
    ∴∠CMD=99°.
    ∵∠CMB=99°不变,是定值,
    ∴“齐天大圣”点M在洞顶上巡视时总能看清洞口CD的情况.

    24.(2022•黔西南州)如图,在△ABC中,AB=AC,以AB为直径作⊙O,分别交BC于点D,交AC于点E,DH⊥AC,垂足为H,连接DE并延长交BA的延长线于点F.
    (1)求证:DH是⊙O的切线;
    (2)若E为AH的中点,求的值.

    【解答】(1)证明:连接OD,如图所示:

    ∵OB=OD,
    ∴∠OBD=∠ODB,
    ∵AB=AC,
    ∴∠ABC=∠ACB,
    ∴∠ODB=∠ACB,
    ∴OD∥AC,
    ∵DH⊥AC,
    ∴DH⊥OD,
    ∵OD是⊙O的半径,
    ∴DH是⊙O的切线;
    (2)解:连接AD,如图所示:

    ∵AB为⊙O的直径,
    ∴OA=OB,∠ADB=90°,
    ∵AB=AC,
    ∴BD=CD,
    ∴OD=AC,OD∥AC,
    ∴△AEF∽△ODF,
    ∴=,
    ∵∠CED+∠DEA=180°,∠B+∠DEA=180°,
    ∴∠CED=∠B=∠C,
    ∴CD=ED,
    ∵DH⊥AC,
    ∴CH=EH,
    ∵E为AH的中点,
    ∴AE=EH=CH,
    ∴===.
    25.(2021•毕节市)如图,⊙O是△ABC的外接圆,点E是△ABC的内心,AE的延长线交BC于点F,交⊙O于点D,连接BD,BE.
    (1)求证:DB=DE;
    (2)若AE=3,DF=4,求DB的长.

    【解答】(1)证明:∵点E是△ABC的内心,
    ∴AE平分∠BAC,BE平分∠ABC,
    ∴∠BAD=∠CAD,∠ABE=∠CBE,
    又∵∠CAD与∠CBD所对弧为,
    ∴∠CAD=∠CBD=∠BAD.
    ∴∠BED=∠ABE+∠BAD,∠DBE=∠CBE+∠CBD,
    即∠BED=∠DBE,
    故DB=DE.
    (2)解:∵∠D=∠D,∠DBF=∠CAD=∠BAD,
    ∴△ABD∽△BFD,
    ∴①,
    ∵DF=4,AE=3,设EF=x,
    由(1)可得DB=DE=4+x,
    则①式化为,
    解得:x1=2,x2=﹣6(不符题意,舍去),
    则DB=4+x=4+2=6.
    26.(2021•铜仁市)如图,已知△ABC内接于⊙O,AB是⊙O的直径,∠CAB的平分线交BC于点D,交⊙O于点E,连接EB,作∠BEF=∠CAE,交AB的延长线于点F.
    (1)求证:EF是⊙O的切线;
    (2)若BF=10,EF=20,求⊙O的半径和AD的长.

    【解答】(1)证明:连接OE,

    ∵AB是⊙O的直径,
    ∴∠AEB=90°,
    即∠AEO+∠OEB=90°,
    ∵AE平分∠CAB,
    ∴∠CAE=∠BAE,
    ∵∠BEF=∠CAE,
    ∴∠BEF=∠BAE,
    ∵OA=OE,
    ∴∠BAE=∠AEO,
    ∴∠BEF=∠AEO,
    ∴∠BEF+∠OEB=90°,
    ∴∠OEF=90°,
    ∴OE⊥EF,
    ∵OE是⊙O的半径,
    ∴EF是⊙O的切线;
    (2)解:如图,设⊙O的半径为x,则OE=OB=x,
    ∴OF=x+10,
    在Rt△OEF中,由勾股定理得:OE2+EF2=OF2,
    ∴x2+202=(x+10)2,
    解得:x=15,
    ∴⊙O的半径为15;

    ∵∠BEF=∠BAE,∠F=∠F,
    ∴△EBF∽△AEF,
    ∴==,
    设BE=a,则AE=2a,
    由勾股定理得:AE2+BE2=AB2,
    即a2+(2a)2=302,
    解得:a=6,
    ∴AE=2a=12,
    ∵∠CAE=∠BAE,
    ∴,
    ∴OE⊥BC,
    ∵OE⊥EF,
    ∴BC∥EF,
    ∴,即,
    ∴AD=9.
    27.(2021•安顺)如图,在⊙O中,AC为⊙O的直径,AB为⊙O的弦,点E是的中点,过点E作AB的垂线,交AB于点M,交⊙O于点N,分别连接EB,CN.
    (1)EM与BE的数量关系是  BE=EM ;
    (2)求证:=;
    (3)若AM=,MB=1,求阴影部分图形的面积.

    【解答】解:(1)∵AC为⊙O的直径,点E是的中点,
    ∴∠ABE=45°,
    ∵AB⊥EN,
    ∴△BME是等腰直角三角形,
    ∴BE=EM,
    故答案为BE=EM;

    (2)连接EO,
    ∵AC是⊙O的直径,E是的中点,
    ∴∠AOE=90°,
    ∴∠ABE=∠AOE=45°,
    ∵EN⊥AB,垂足为点M,
    ∴∠EMB=90°
    ∴∠ABE=∠BEN=45°,
    ∴=,
    ∵点E是的中点,
    ∴=,
    ∴=,
    ∴﹣=﹣,
    ∴=;

    (3)连接AE,OB,ON,
    ∵EN⊥AB,垂足为点M,
    ∴∠AME=∠EMB=90°,
    ∵BM=1,由(2)得∠ABE=∠BEN=45°,
    ∴EM=BM=1,
    又∵BE=EM,
    ∴BE=,
    ∵在Rt△AEM中,EM=1,AM=,
    ∴tan∠EAB==,
    ∴∠EAB=30°,
    ∵∠EAB=∠EOB,
    ∴∠EOB=60°,
    又∵OE=OB,
    ∴△EOB是等边三角形,
    ∴OE=BE=,
    又∵=,
    ∴BE=CN,
    ∴△OEB≌△OCN(SSS),
    ∴CN=BE=
    又∵S扇形OCN==,S△OCN=CN×CN=×=,
    ∴S阴影=S扇形OCN﹣S△OCN=﹣.

    28.(2020•铜仁市)如图,AB是⊙O的直径,C为⊙O上一点,连接AC,CE⊥AB于点E,D是直径AB延长线上一点,且∠BCE=∠BCD.
    (1)求证:CD是⊙O的切线;
    (2)若AD=8,=,求CD的长.

    【解答】(1)证明:连接OC,
    ∵AB是⊙O的直径,
    ∴∠ACB=90°,
    ∵CE⊥AB,
    ∴∠CEB=90°,
    ∴∠ECB+∠ABC=∠ABC+∠CAB=90°,
    ∴∠A=∠ECB,
    ∵∠BCE=∠BCD,
    ∴∠A=∠BCD,
    ∵OC=OA,
    ∴∠A=∠ACO,
    ∴∠ACO=∠BCD,
    ∴∠ACO+∠BCO=∠BCO+∠BCD=90°,
    ∴∠DCO=90°,
    ∴CD是⊙O的切线;
    (2)解:∵∠A=∠BCE,
    ∴tanA==tan∠BCE==,
    设BC=k,AC=2k,
    ∵∠D=∠D,∠A=∠BCD,
    ∴△ACD∽△CBD,
    ∴==,
    ∵AD=8,
    ∴CD=4.

    29.(2020•遵义)如图,AB是⊙O的直径,点C是⊙O上一点,∠CAB的平分线AD交于点D,过点D作DE∥BC交AC的延长线于点E.
    (1)求证:DE是⊙O的切线;
    (2)过点D作DF⊥AB于点F,连接BD.若OF=1,BF=2,求BD的长度.

    【解答】解:(1)连接OD,如图,

    ∵OA=OD,
    ∴∠OAD=∠ADO,
    ∵AD平分∠CAB,
    ∴∠DAE=∠OAD,
    ∴∠ADO=∠DAE,
    ∴OD∥AE,
    ∵DE∥BC,
    ∴∠E=90°,
    ∴∠ODE=180°﹣∠E=90°,
    ∴DE是⊙O的切线;
    (2)∵AB是⊙O的直径,
    ∴∠ADB=90°,
    ∵OF=1,BF=2,
    ∴OB=3,
    ∴AF=4,BA=6.
    ∵DF⊥AB,
    ∴∠DFB=90°,
    ∴∠ADB=∠DFB,
    又∵∠DBF=∠ABD,
    ∴△DBF∽△ABD,
    ∴=,
    ∴BD2=BF•BA=2×6=12.
    ∴BD=2.
    解法二:利用勾股定理求出DF,再利用勾股定理求出BD即可.

    相关试卷

    第27章+相似-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州):

    这是一份第27章+相似-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州),共13页。

    第24章+圆-【人教版-中考真题】九年级数学上学期期末复习培优练习(内蒙古):

    这是一份第24章+圆-【人教版-中考真题】九年级数学上学期期末复习培优练习(内蒙古),共26页。

    第23章旋转-【人教版-中考真题】九年级数学上学期期末复习培优练习(贵州):

    这是一份第23章旋转-【人教版-中考真题】九年级数学上学期期末复习培优练习(贵州),共13页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map