第26章+反比例函数-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州)
展开
这是一份第26章+反比例函数-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州),共29页。
第26章 反比例函数-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州)
一.选择题(共9小题)
1.(2022•安顺)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则一次函数y=ax+b和反比例函数y=(c≠0)在同一直角坐标系中的图象可能是( )
A.
B.
C.
D.
2.(2022•黔西南州)在平面直角坐标系中,反比例函数y=(k≠0)的图象如图所示,则一次函数y=kx+2的图象经过的象限是( )
A.一、二、三 B.一、二、四 C.一、三、四 D.二、三、四
3.(2022•贵阳)如图,在平面直角坐标系中有P,Q,M,N四个点,其中恰有三点在反比例函数y=(k>0)的图象上.根据图中四点的位置,判断这四个点中不在函数y=的图象上的点是( )
A.点P B.点Q C.点M D.点N
4.(2021•黔西南州)对于反比例函数y=,下列说法错误的是( )
A.图象经过点(1,﹣5)
B.图象位于第二、第四象限
C.当x<0时,y随x的增大而减小
D.当x>0时,y随x的增大而增大
5.(2021•遵义)已知反比例函数y=(k≠0)的图象如图所示,则一次函数y=kx+2的图象经过( )
A.第一、二、三象限 B.第一、三、四象限
C.第一、二、四象限 D.第二、三、四象限
6.(2021•安顺)已知反比例函数y=(k≠0)的图象与正比例函数y=ax(a≠0)的图象相交于A,B两点,若点A的坐标是(1,2),则点B的坐标是( )
A.(﹣1,2) B.(1,﹣2) C.(﹣1,﹣2) D.(2,1)
7.(2020秋•铜仁市期末)如图,在平面直角坐标系中,直线y=k1x+2与x轴交于点A,与y轴交于点C,与反比例函数y=在第一象限内的图象交于点B,连接BO.若S△OBC=1,tan∠BOC=,则k2的值是( )
A.﹣3 B.1 C.2 D.3
8.(2020•黔东南州)如图,点A是反比例函数y=(x>0)上的一点,过点A作AC⊥y轴,垂足为点C,AC交反比例函数y=的图象于点B,点P是x轴上的动点,则△PAB的面积为( )
A.2 B.4 C.6 D.8
9.(2020•黔西南州)如图,在菱形ABOC中,AB=2,∠A=60°,菱形的一个顶点C在反比例函数y=(k≠0)的图象上,则反比例函数的解析式为( )
A.y=﹣ B.y=﹣ C.y=﹣ D.y=
二.填空题(共11小题)
10.(2022•黔西南州)已知点(2,y1),(3,y2)在反比例函数y=的图象上,则y1与y2的大小关系是 .
11.(2022•铜仁市)如图,点A、B在反比例函数的图象上,AC⊥y轴,垂足为D,BC⊥AC.若四边形AOBC的面积为6,,则k的值为 .
12.(2022•遵义)反比例函数y=(k≠0)与一次函数y=x﹣1交于点A(3,n),则k的值为 .
13.(2022•毕节市)如图,在平面直角坐标系中,正方形ABCD的顶点A,B分别在x轴、y轴上,对角线交于点E,反比例函数y=(x>0,k>0)的图象经过点C,E.若点A(3,0),则k的值是 .
14.(2021•毕节市)如图,直线AB与反比例函数y=(k>0,x>0)的图象交于A,B两点,与x轴交于点C,且AB=BC,连接OA.已知△OAC的面积为12,则k的值为 .
15.(2021•黔东南州)如图,若反比例函数y=的图象经过等边三角形POQ的顶点P,则△POQ的边长为 .
16.(2021•铜仁市)如图,矩形ABOC的顶点A在反比例函数y=的图象上,矩形ABOC的面积为3,则k= .
17.(2020•黔南州)如图,正方形ABCD的边长为10,点A的坐标为(﹣8,0),点B在y轴上,若反比例函数y=(k≠0)的图象过点C,则该反比例函数的解析式为 .
18.(2020•毕节市)一次函数y=ax+b(a≠0)的图象与反比例函数y=(k≠0)的图象的两个交点分别是A(﹣1,﹣4),B(2,m),则a+2b= .
19.(2020•贵阳)如图,点A是反比例函数y=图象上任意一点,过点A分别作x轴,y轴的垂线,垂足为B,C,则四边形OBAC的面积为 .
20.(2020•铜仁市)已知点(2,﹣2)在反比例函数y=的图象上,则这个反比例函数的表达式是 .
三.解答题(共5小题)
21.(2022•六盘水)如图,正比例函数y=x与反比例函数y=的图象交于A,B两点.
(1)求A,B两点的坐标;
(2)将直线y=x向下平移a个单位长度,与反比例函数在第一象限的图象交于点C,与x轴交于点D,与y轴交于点E,若=,求a的值.
22.(2022•安顺)如图,在平面直角坐标系中,菱形ABCD的顶点D在y轴上,A,C两点的坐标分别为(4,0),(4,m),直线CD:y=ax+b(a≠0)与反比例函数y=(k≠0)的图象交于C,P(﹣8,﹣2)两点.
(1)求该反比例函数的解析式及m的值;
(2)判断点B是否在该反比例函数的图象上,并说明理由.
23.(2022•贵阳)一次函数y=﹣x﹣3的图象与反比例函数y=的图象相交于A(﹣4,m),B(n,﹣4)两点.
(1)求这个反比例函数的表达式;
(2)根据图象写出使一次函数值小于反比例函数值的x的取值范围.
24.(2021•贵阳)如图,一次函数y=kx﹣2k(k≠0)的图象与反比例函数y=(m﹣1≠0)的图象交于点C,与x轴交于点A,过点C作CB⊥y轴,垂足为B,若S△ABC=3.
(1)求点A的坐标及m的值;
(2)若AB=2,求一次函数的表达式.
25.(2020•安顺)如图,一次函数y=x+1的图象与反比例函数y=的图象相交,其中一个交点的横坐标是2.
(1)求反比例函数的表达式;
(2)将一次函数y=x+1的图象向下平移2个单位,求平移后的图象与反比例函数y=图象的交点坐标;
(3)直接写出一个一次函数,使其过点(0,5),且与反比例函数y=的图象没有公共点.
第26章 反比例函数-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州)
参考答案与试题解析
一.选择题(共9小题)
1.(2022•安顺)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则一次函数y=ax+b和反比例函数y=(c≠0)在同一直角坐标系中的图象可能是( )
A.
B.
C.
D.
【解答】解:∵二次函数y=ax2+bx+c的图象开口向上,
∴a>0,
∵该抛物线对称轴位于y轴的右侧,
∴a、b异号,即b<0.
∵抛物线交y轴的负半轴,
∴c<0,
∴一次函数y=ax+b的图象经过第一、三、四象限,反比例函数y=(c≠0)在二、四象限.
故选:A.
2.(2022•黔西南州)在平面直角坐标系中,反比例函数y=(k≠0)的图象如图所示,则一次函数y=kx+2的图象经过的象限是( )
A.一、二、三 B.一、二、四 C.一、三、四 D.二、三、四
【解答】解:由图可知:k<0,
∴一次函数y=kx+2的图象经过的象限是一、二、四.
故选:B.
3.(2022•贵阳)如图,在平面直角坐标系中有P,Q,M,N四个点,其中恰有三点在反比例函数y=(k>0)的图象上.根据图中四点的位置,判断这四个点中不在函数y=的图象上的点是( )
A.点P B.点Q C.点M D.点N
【解答】解:如图,反比例函数y=的图象是双曲线,若点在反比例函数的图象上,则其纵横坐标的积为常数k,即xy=k,
通过观察发现,点P、Q、N可能在图象上,点M不在图象上,
故选:C.
4.(2021•黔西南州)对于反比例函数y=,下列说法错误的是( )
A.图象经过点(1,﹣5)
B.图象位于第二、第四象限
C.当x<0时,y随x的增大而减小
D.当x>0时,y随x的增大而增大
【解答】解:∵反比例函数y=,
∴当x=1时,y=﹣=﹣5,故选项A不符合题意;
k=﹣5,故该函数图象位于第二、四象限,故选项B不符合题意;
当x<0,y随x的增大而增大,故选项C符合题意;
当x>0时,y随x的增大而增大,故选项D不符合题意;
故选:C.
5.(2021•遵义)已知反比例函数y=(k≠0)的图象如图所示,则一次函数y=kx+2的图象经过( )
A.第一、二、三象限 B.第一、三、四象限
C.第一、二、四象限 D.第二、三、四象限
【解答】解:由反比例函数图象经过二、四象限,可知,k<0,
∴y=kx+2的图象经过一、二、四象限.
故选:C.
6.(2021•安顺)已知反比例函数y=(k≠0)的图象与正比例函数y=ax(a≠0)的图象相交于A,B两点,若点A的坐标是(1,2),则点B的坐标是( )
A.(﹣1,2) B.(1,﹣2) C.(﹣1,﹣2) D.(2,1)
【解答】解:根据题意,知
点A与B关于原点对称,
∵点A的坐标是(1,2),
∴B点的坐标为(﹣1,﹣2).
故选:C.
7.(2020秋•铜仁市期末)如图,在平面直角坐标系中,直线y=k1x+2与x轴交于点A,与y轴交于点C,与反比例函数y=在第一象限内的图象交于点B,连接BO.若S△OBC=1,tan∠BOC=,则k2的值是( )
A.﹣3 B.1 C.2 D.3
【解答】解:∵直线y=k1x+2与x轴交于点A,与y轴交于点C,
∴点C的坐标为(0,2),
∴OC=2,
∵S△OBC=1,
∴BD=1,
∵tan∠BOC=,
∴=,
∴OD=3,
∴点B的坐标为(1,3),
∵反比例函数y=在第一象限内的图象交于点B,
∴k2=1×3=3.
故选:D.
8.(2020•黔东南州)如图,点A是反比例函数y=(x>0)上的一点,过点A作AC⊥y轴,垂足为点C,AC交反比例函数y=的图象于点B,点P是x轴上的动点,则△PAB的面积为( )
A.2 B.4 C.6 D.8
【解答】解:如图,连接OA、OB、PC.
∵AC⊥y轴,
∴S△APC=S△AOC=×|6|=3,S△BPC=S△BOC=×|2|=1,
∴S△PAB=S△APC﹣S△BPC=2.
故选:A.
9.(2020•黔西南州)如图,在菱形ABOC中,AB=2,∠A=60°,菱形的一个顶点C在反比例函数y=(k≠0)的图象上,则反比例函数的解析式为( )
A.y=﹣ B.y=﹣ C.y=﹣ D.y=
【解答】解:∵在菱形ABOC中,∠A=60°,菱形边长为2,
∴OC=2,∠COB=60°,
过C作CE⊥OB于E,
则∠OCE=30°,
∴OE=OC=1,CE=,
∴点C的坐标为(﹣1,),
∵顶点C在反比例函数y=的图象上,
∴=,得k=﹣,
即y=﹣,
故选:B.
二.填空题(共11小题)
10.(2022•黔西南州)已知点(2,y1),(3,y2)在反比例函数y=的图象上,则y1与y2的大小关系是 y1>y2 .
【解答】解:∵反比例函数y=中,k=6>0,
∴此函数图象的两个分支在一、三象限,
∵0<2<3,
∴两点都在第一象限,
∵在第一象限内y的值随x的增大而减小,
∴y1>y2.
故答案为:y1>y2.
11.(2022•铜仁市)如图,点A、B在反比例函数的图象上,AC⊥y轴,垂足为D,BC⊥AC.若四边形AOBC的面积为6,,则k的值为 3 .
【解答】解:设点,
∵AC⊥y轴,
∴AD=a,,
∵,
∴AC=2a,
∴CD=3a,
∵BC⊥AC.AC⊥y轴,
∴BC∥y轴,
∴点B,
∴,
∵S梯形OBCD=S△AOD+S四边形AOBC,
∴,
解得:k=3.
故答案为:3.
12.(2022•遵义)反比例函数y=(k≠0)与一次函数y=x﹣1交于点A(3,n),则k的值为 6 .
【解答】解:∵一次函数y=x﹣1经过点A(3,n),
∴n=3﹣1=2,
∵反比例函数y=(k≠0)经过A(3,2),
∴k=3×2=6,
故答案为:6.
13.(2022•毕节市)如图,在平面直角坐标系中,正方形ABCD的顶点A,B分别在x轴、y轴上,对角线交于点E,反比例函数y=(x>0,k>0)的图象经过点C,E.若点A(3,0),则k的值是 4 .
【解答】解:设C(m,),
∵四边形ABCD是正方形,
∴点E为AC的中点,
∴E(,),
∵点E在反比例函数y=上,
∴,
∴m=1,
作CH⊥y轴于H,
∴CH=1,
∵四边形ABCD是正方形,
∴BA=BC,∠ABC=90°,
∴∠OBA=∠HCB,
∵∠AOB=∠BHC,
∴△AOB≌△BHC(AAS),
∴BH=OA=3,OB=CH=1,
∴C(1,4),
∴k=4,
故答案为:4.
14.(2021•毕节市)如图,直线AB与反比例函数y=(k>0,x>0)的图象交于A,B两点,与x轴交于点C,且AB=BC,连接OA.已知△OAC的面积为12,则k的值为 8 .
【解答】解:设AM⊥x轴于M,BN⊥x轴于N,
∴AM∥BN,
∴=,
∵AB=BC,
∴=,
设B(,a),A(,2a),
设直线AB的解析式为y=mx+n,
∴,解得,
∴直线AB的解析式为y=﹣x+3a,
当y=0时,﹣x+3a=0,解得x=,
∴C(,0),
∵△OAC的面积为12,
∴××2a=12,
∴k=8,
故答案为8.
方法二:
解:设AM⊥x轴于M,BN⊥x轴于N,
∴AM∥BN,
∴=,
∵AB=BC,
∴=,
设B(,a),A(,2a),
设直线AB的解析式为y=mx+n,
∴,解得,
∴直线AB的解析式为y=﹣x+3a,
当y=0时,﹣x+3a=0,解得x=,
∴C(,0),
∴OC=3OM,
∴S△AOM=|k|===4,
∵k>0,
∴k=8.
故答案为8.
aa
15.(2021•黔东南州)如图,若反比例函数y=的图象经过等边三角形POQ的顶点P,则△POQ的边长为 2 .
【解答】解:如图,过点P作x轴的垂线于M,
∵△POQ为等边三角形,
∴OP=OQ,OM=QM=OQ,
∵反比例函数的图象经过点P,
∴设P(a,)(a>0),
则OM=a,OQ=OP=2a,PM=,
在Rt△OPM中,
PM===a,
∴=a,
∴a=1(负值舍去),
∴OQ=2a=2,
故答案为:2.
16.(2021•铜仁市)如图,矩形ABOC的顶点A在反比例函数y=的图象上,矩形ABOC的面积为3,则k= 3 .
【解答】解:∵矩形ABOC的面积为3,
∴|k|=3,
又∵k>0,
∴k=3,
故答案为:3.
17.(2020•黔南州)如图,正方形ABCD的边长为10,点A的坐标为(﹣8,0),点B在y轴上,若反比例函数y=(k≠0)的图象过点C,则该反比例函数的解析式为 y= .
【解答】解:如图,过点C作CE⊥y轴于E,
∵四边形ABCD是正方形,
∴AB=BC=10,∠ABC=90°,
∴OB===6,
∵∠ABC=∠AOB=90°,
∴∠ABO+∠CBE=90°,∠ABO+∠BAO=90°,
∴∠BAO=∠CBE,
又∵∠AOB=∠BEC=90°,
∴△ABO≌△BCE(AAS),
∴CE=OB=6,BE=AO=8,
∴OE=2,
∴点C(6,2),
∵反比例函数y=(k≠0)的图象过点C,
∴k=6×2=12,
∴反比例函数的解析式为y=,
故答案为:y=.
18.(2020•毕节市)一次函数y=ax+b(a≠0)的图象与反比例函数y=(k≠0)的图象的两个交点分别是A(﹣1,﹣4),B(2,m),则a+2b= ﹣2 .
【解答】解:把A(﹣1,﹣4)代入反比例函数y=(k≠0)的关系式得,k=﹣1×(﹣4)=4,
∴反比例函数的关系式为y=,
当x=2时,y=m==2,
∴B(2,2),
把A(﹣1,﹣4),B(2,2)代入一次函数y=ax+b得,
,
∴a+2b=﹣2,
故答案为:﹣2.
19.(2020•贵阳)如图,点A是反比例函数y=图象上任意一点,过点A分别作x轴,y轴的垂线,垂足为B,C,则四边形OBAC的面积为 3 .
【解答】解:∵过点A分别作x轴,y轴的垂线,垂足为B,C,
∴AB×AC=|k|=3,
则四边形OBAC的面积为:3.
故答案为:3.
20.(2020•铜仁市)已知点(2,﹣2)在反比例函数y=的图象上,则这个反比例函数的表达式是 y=﹣ .
【解答】解:∵反比例函数y=(k≠0)的图象上一点的坐标为(2,﹣2),
∴k=﹣2×2=﹣4,
∴反比例函数解析式为y=﹣,
故答案为:y=﹣.
三.解答题(共5小题)
21.(2022•六盘水)如图,正比例函数y=x与反比例函数y=的图象交于A,B两点.
(1)求A,B两点的坐标;
(2)将直线y=x向下平移a个单位长度,与反比例函数在第一象限的图象交于点C,与x轴交于点D,与y轴交于点E,若=,求a的值.
【解答】解:(1)∵正比例函数y=x与反比例函数y=的图象交于A、B两点,
∴x=,
解得x=±2(负值舍去),
∴A(2,2),B(﹣2,﹣2);
(2)∵直线y=x向下平移a个单位长度,
∴直线CD解析式为:y=x﹣a,
当y=0时,x=a,
∴点D的坐标为(a,0),
如图,过点C作CF⊥x轴于点F,
∴CF∥OE,
∴==,
∴FD=a,
∴OF=OD+FD=a,
∵点C在直线CD上,
∴y=a﹣a=a,
∴CF=a,
∴点C的坐标是(a,a).
∵点C在反比例函数y=的图象上,
∴a×a=4,
解得a=±3(负值舍去),
∴a=3.
22.(2022•安顺)如图,在平面直角坐标系中,菱形ABCD的顶点D在y轴上,A,C两点的坐标分别为(4,0),(4,m),直线CD:y=ax+b(a≠0)与反比例函数y=(k≠0)的图象交于C,P(﹣8,﹣2)两点.
(1)求该反比例函数的解析式及m的值;
(2)判断点B是否在该反比例函数的图象上,并说明理由.
【解答】解:(1)把P(﹣8,﹣2)代入y=得:
﹣2=,
解得k=16,
∴反比例函数的解析式为y=,
∵C(4,m)在反比例函数y=的图象上,
∴m==4;
∴反比例函数的解析式为y=,m=4;
(2)B在反比例函数y=的图象上,理由如下:
连接AC,BD交于H,如图:
把C(4,4),P(﹣8,﹣2)代入y=ax+b得:
,
解得,
∴直线CD的解析式是y=x+2,
在y=x+2中,令x=0得y=2,
∴D(0,2),
∵四边形ABCD是菱形,
∴H是AC中点,也是BD中点,
由A(4,0),C(4,4)可得H(4,2),
设B(p,q),
∵D(0,2),
∴,
解得,
∴B(8,2),
在y=中,令x=8得y=2,
∴B在反比例函数y=的图象上.
23.(2022•贵阳)一次函数y=﹣x﹣3的图象与反比例函数y=的图象相交于A(﹣4,m),B(n,﹣4)两点.
(1)求这个反比例函数的表达式;
(2)根据图象写出使一次函数值小于反比例函数值的x的取值范围.
【解答】解:(1)∵一次函数y=﹣x﹣3过点A(﹣4,m),
∴m=﹣(﹣4)﹣3=1.
∴点A的坐标为(﹣4,1).
∵反比例函数y=的图象过点A,
∴k=xy=﹣4×1=﹣4.
∴反比例函数的表达式为y=﹣.
(2)∵反比例函数y=﹣过点B(n,﹣4).
∴﹣4=﹣,解得n=1.
∵一次函数值小于反比例函数值,
∴一次函数图象在反比例函数图象的下方.
∴在y轴左侧,一次函数值小于反比例函数值x的取值范围为:﹣4<x<0;
在第四象限内,一次函数值小于反比例函数值x的取值范围为:x>1.
∴一次函数值小于反比例函数值的x取值范围为:﹣4<x<0或x>1.
24.(2021•贵阳)如图,一次函数y=kx﹣2k(k≠0)的图象与反比例函数y=(m﹣1≠0)的图象交于点C,与x轴交于点A,过点C作CB⊥y轴,垂足为B,若S△ABC=3.
(1)求点A的坐标及m的值;
(2)若AB=2,求一次函数的表达式.
【解答】解:(1)令y=0,则kx﹣2k=0,
∴x=2,
∴A(2,0),
设C(a,b),
∵CB⊥y轴,
∴B(0,b),
∴BC=﹣a,
∵S△ABC=3,
∴,
∴ab=﹣6,
∴m﹣1=ab=﹣6,
∴m=﹣5,
即A(2,0),m=﹣5;
(2)在Rt△AOB中,AB2=OA2+OB2,
∵,
∴b2+4=8,
∴b2=4,
∴b=±2,
∵b>0,
∴b=2,
∴a=﹣3,
∴C(﹣3,2),
将C(﹣3,2)代入到直线解析式中得,
∴一次函数的表达式为.
25.(2020•安顺)如图,一次函数y=x+1的图象与反比例函数y=的图象相交,其中一个交点的横坐标是2.
(1)求反比例函数的表达式;
(2)将一次函数y=x+1的图象向下平移2个单位,求平移后的图象与反比例函数y=图象的交点坐标;
(3)直接写出一个一次函数,使其过点(0,5),且与反比例函数y=的图象没有公共点.
【解答】解:(1)将x=2代入y=x+1=3,故其中交点的坐标为(2,3),
将(2,3)代入反比例函数表达式并解得:k=2×3=6,
故反比例函数表达式为:y=①;
(2)一次函数y=x+1的图象向下平移2个单位得到y=x﹣1②,
联立①②并解得:,
故交点坐标为(﹣2,﹣3)和(3,2);
(3)设一次函数的表达式为:y=kx+5③,
联立①③并整理得:kx2+5x﹣6=0,
∵两个函数没有公共点,故△=25+24k<0,解得:k<﹣,
故可以取k=﹣2(答案不唯一),
故一次函数表达式为:y=﹣2x+5(答案不唯一).
相关试卷
这是一份第28章+锐角三角形-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州),共28页。
这是一份第29章+投影与视图-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州),共13页。
这是一份第27章+相似-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州),共13页。