终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    第27相似-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北)

    立即下载
    加入资料篮
    第27相似-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北)第1页
    第27相似-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北)第2页
    第27相似-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北)第3页
    还剩14页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第27相似-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北)

    展开

    这是一份第27相似-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北),共17页。试卷主要包含了,y与t的函数图象如图2所示等内容,欢迎下载使用。
    第27相似-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北)
    一.选择题(共1小题)
    1.(2022•十堰)如图,某零件的外径为10cm,用一个交叉卡钳(两条尺长AC和BD相等)可测量零件的内孔直径AB.如果OA:OC=OB:OD=3,且量得CD=3cm,则零件的厚度x为(  )

    A.0.3cm B.0.5cm C.0.7cm D.1cm
    二.填空题(共4小题)
    2.(2022•襄阳)如图,在△ABC中,D是AC的中点,△ABC的角平分线AE交BD于点F,若BF:FD=3:1,AB+BE=3,则△ABC的周长为    .

    3.(2022•湖北)如图1,在△ABC中,∠B=36°,动点P从点A出发,沿折线A→B→C匀速运动至点C停止.若点P的运动速度为1cm/s,设点P的运动时间为t(s),AP的长度为y(cm),y与t的函数图象如图2所示.当AP恰好平分∠BAC时t的值为    .


    4.(2021•湖北)人们把这个数叫做黄金分割数,著名数学家华罗庚优选法中的0.618法就应用了黄金分割数.设a=,b=,得ab=1,记S1=,S2=,…,S10=,则S1+S2+…+S10=   .
    5.(2020•咸宁)如图,四边形ABCD是边长为2的正方形,点E是边BC上一动点(不与点B,C重合),∠AEF=90°,且EF交正方形外角的平分线CF于点F,交CD于点G,连接AF,有下列结论:
    ①△ABE∽△ECG;
    ②AE=EF;
    ③∠DAF=∠CFE;
    ④△CEF的面积的最大值为1.
    其中正确结论的序号是   .(把正确结论的序号都填上)

    三.解答题(共6小题)
    6.(2022•襄阳)如图,AB是半圆O的直径,点C在半圆O上,点D为的中点,连接AC,BC,AD,AD与BC相交于点G,过点D作直线DE∥BC,交AC的延长线于点E.
    (1)求证:DE是⊙O的切线;
    (2)若=,CG=2,求阴影部分的面积.

    7.(2022•湖北)如图,⊙O是△ABC的外接圆,AD是⊙O的直径,BC与过点A的切线EF平行,BC,AD相交于点G.
    (1)求证:AB=AC;
    (2)若DG=BC=16,求AB的长.

    8.(2021•鄂州)如图,在▱ABCD中,点E、F分别在边AD、BC上,且∠ABE=∠CDF.
    (1)探究四边形BEDF的形状,并说明理由;
    (2)连接AC,分别交BE、DF于点G、H,连接BD交AC于点O.若=,AE=4,求BC的长.

    9.(2021•湖北)如图,在△ABC和△DEC中,∠A=∠D,∠BCE=∠ACD.
    (1)求证:△ABC∽△DEC;
    (2)若S△ABC:S△DEC=4:9,BC=6,求EC的长.

    10.(2020•湖北)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D的直线EF交AC于点F,交AB的延长线于点E,且∠BAC=2∠BDE.
    (1)求证:DF是⊙O的切线;
    (2)当CF=2,BE=3时,求AF的长.

    11.(2020•黄冈)已知:如图,AB是⊙O的直径,点E为⊙O上一点,点D是上一点,连接AE并延长至点C,使∠CBE=∠BDE,BD与AE交于点F.
    (1)求证:BC是⊙O的切线;
    (2)若BD平分∠ABE,求证:AD2=DF•DB.


    第27相似-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北)
    参考答案与试题解析
    一.选择题(共1小题)
    1.(2022•十堰)如图,某零件的外径为10cm,用一个交叉卡钳(两条尺长AC和BD相等)可测量零件的内孔直径AB.如果OA:OC=OB:OD=3,且量得CD=3cm,则零件的厚度x为(  )

    A.0.3cm B.0.5cm C.0.7cm D.1cm
    【解答】解:∵OA:OC=OB:OD=3,∠COD=∠AOB,
    ∴△COD∽△AOB,
    ∴AB:CD=3,
    ∵CD=3cm,
    ∴AB=9cm,
    ∵某零件的外径为10cm,
    ∴零件的厚度x为:(10﹣9)÷2=1÷2=0.5(cm),
    故选:B.
    二.填空题(共4小题)
    2.(2022•襄阳)如图,在△ABC中,D是AC的中点,△ABC的角平分线AE交BD于点F,若BF:FD=3:1,AB+BE=3,则△ABC的周长为  5 .

    【解答】解:如图,过点F作FM⊥AB于点M,FN⊥AC于点N,过点D作DT∥AE交BC于点T.

    ∵AE平分∠BAC,FM⊥AB,FN⊥AC,
    ∴FM=FN,
    ∴===3,
    ∴AB=3AD,
    设AD=DC=a,则AB=3a,
    ∵AD=DC,DT∥AE,
    ∴ET=CT,
    ∴==3,
    设ET=CT=b,则BE=3b,
    ∵AB+BE=3,
    ∴3a+3b=3,
    ∴a+b=,
    ∴△ABC的周长=AB+AC+BC=5a+5b=5,
    故答案为:5.
    3.(2022•湖北)如图1,在△ABC中,∠B=36°,动点P从点A出发,沿折线A→B→C匀速运动至点C停止.若点P的运动速度为1cm/s,设点P的运动时间为t(s),AP的长度为y(cm),y与t的函数图象如图2所示.当AP恰好平分∠BAC时t的值为  2+2 .


    【解答】解:如图,连接AP,

    由图2可得AB=BC=4cm,
    ∵∠B=36°,AB=BC,
    ∴∠BAC=∠C=72°,
    ∵AP平分∠BAC,
    ∴∠BAP=∠PAC=∠B=36°,
    ∴AP=BP,∠APC=72°=∠C,
    ∴AP=AC=BP,
    ∵∠PAC=∠B,∠C=∠C,
    ∴△APC∽△BAC,
    ∴,
    ∴AP2=AB•PC=4(4﹣AP),
    ∴AP=2﹣2=BP,(负值舍去),
    ∴t==2+2,
    故答案为:2+2.
    4.(2021•湖北)人们把这个数叫做黄金分割数,著名数学家华罗庚优选法中的0.618法就应用了黄金分割数.设a=,b=,得ab=1,记S1=,S2=,…,S10=,则S1+S2+…+S10= 10 .
    【解答】解:∵S1===1,S2===1,…,S10===1,
    ∴S1+S2+…+S10=1+1+…+1=10,
    故答案为10.
    5.(2020•咸宁)如图,四边形ABCD是边长为2的正方形,点E是边BC上一动点(不与点B,C重合),∠AEF=90°,且EF交正方形外角的平分线CF于点F,交CD于点G,连接AF,有下列结论:
    ①△ABE∽△ECG;
    ②AE=EF;
    ③∠DAF=∠CFE;
    ④△CEF的面积的最大值为1.
    其中正确结论的序号是 ①②③ .(把正确结论的序号都填上)

    【解答】解:①∵四边形ABCD是正方形,
    ∴∠B=∠ECG=90°,
    ∵∠AEF=90°,
    ∴∠AEB+∠CEG=∠AEB+∠BAE,
    ∴∠BAE=∠CEG,
    ∴△ABE∽△ECG,
    故①正确;
    ②在BA上截取BM=BE,如图1,

    ∵四边形ABCD为正方形,
    ∴∠B=90°,BA=BC,
    ∴△BEM为等腰直角三角形,
    ∴∠BME=45°,
    ∴∠AME=135°,
    ∵BA﹣BM=BC﹣BE,
    ∴AM=CE,
    ∵CF为正方形外角平分线,
    ∴∠DCF=45°,
    ∴∠ECF=135°,
    ∵∠AEF=90°,
    ∴∠AEB+∠FEC=90°,
    而∠AEB+∠BAE=90°,
    ∴∠BAE=∠FEC,
    在△AME和△ECF中

    ∴△AME≌△ECF(ASA),
    ∴AE=EF,
    故②正确;
    ③∵AE=EF,∠AEF=90°,
    ∴∠EAF=45°,
    ∴∠BAE+∠DAF=45°,
    ∵∠BAE+∠CFE=∠CEF+∠CFE=45°,
    ∴∠DAF=∠CFE,
    故③正确;
    ④设BE=x,则BM=x,AM=AB﹣BM=2﹣x,
    S△ECF=S△AME=•x•(2﹣x)=﹣(x﹣1)2+,
    当x=1时,S△ECF有最大值,
    故④错误.
    故答案为:①②③.
    三.解答题(共6小题)
    6.(2022•襄阳)如图,AB是半圆O的直径,点C在半圆O上,点D为的中点,连接AC,BC,AD,AD与BC相交于点G,过点D作直线DE∥BC,交AC的延长线于点E.
    (1)求证:DE是⊙O的切线;
    (2)若=,CG=2,求阴影部分的面积.

    【解答】(1)证明:连接OD,如图所示,

    ∵点D为的中点,
    ∴OD⊥BC
    ∵DE∥BC,
    ∴OD⊥DE.
    ∴DE是⊙O的切线.
    (2)解:连接BD,如图所示,

    ∵=,
    ∴BD=AC
    ∵点D为的中点,
    ∴,
    ∴,
    ∴的度数=的度数=的度数=60°,
    ∴∠CAD=∠BAD=30°.
    ∵AB是半圆O的直径,
    ∴∠ACB=∠ADB=90°,
    在Rt△ACG中,tan∠CAD=,sin
    ∴CA=,AG=
    ∵CG=2,
    ∴CA=2×=6,AG=4.
    ∴BD=CA=6,
    ∴S△ACG=CG•AC=6.
    在Rt△ABD中,tan∠BAD=,
    ∴AD===6.
    ∵DE∥BC,
    ∴△CAG∽△EAD,
    ∴,
    即,
    ∴S△EAD=.
    ∴S阴影部分=S△EAD﹣S△ACG=.
    7.(2022•湖北)如图,⊙O是△ABC的外接圆,AD是⊙O的直径,BC与过点A的切线EF平行,BC,AD相交于点G.
    (1)求证:AB=AC;
    (2)若DG=BC=16,求AB的长.

    【解答】(1)证明:∵EF是⊙O的切线,
    ∴DA⊥EF,
    ∵BC∥EF,
    ∴DA⊥BC,
    ∵DA是直径,
    ∴,
    ∴∠ACB=∠ABC,
    ∴AB=AC.
    (2)解:连接DB,
    ∵BG⊥AD,
    ∴∠BGD=∠BGA,
    ∵∠ABG+∠DBG=90°,∠DBG+∠BDG=90°,
    ∴∠ABG=∠BDG,
    ∴△ABG∽△BDG,
    ∴=,
    即BG2=AG×DG,
    ∵BC=16,BG=GC,
    ∴BG=8,
    ∴82=16×AG,
    解得:AG=4,
    在Rt△ABG中,BG=8,AG=4,
    ∴AB=4.
    故答案为:4.

    8.(2021•鄂州)如图,在▱ABCD中,点E、F分别在边AD、BC上,且∠ABE=∠CDF.
    (1)探究四边形BEDF的形状,并说明理由;
    (2)连接AC,分别交BE、DF于点G、H,连接BD交AC于点O.若=,AE=4,求BC的长.

    【解答】解:(1)四边形BEDF为平行四边形,理由如下:
    ∵四边形ABCD为平行四边形,
    ∴∠ABC=∠ADC,
    ∵∠ABE=∠CDF,
    ∴∠EBF=∠EDF,
    ∵四边形ABCD为平行四边形,
    ∴AD∥BC,
    ∴∠EDF=∠DFC=∠EBF,
    ∴BE∥DF,
    ∵AD∥BC,
    ∴四边形BEDF为平行四边形;
    (2)设AG=2a,∵,
    ∴OG=3a,AO=5a,
    ∵四边形ABCD为平行四边形,
    ∴AO=CO=5a,AC=10a,CG=8a,
    ∵AD∥BC,
    ∴△AGE∽△CGB,
    ∴,
    ∵AE=4,
    ∴BC=16.
    9.(2021•湖北)如图,在△ABC和△DEC中,∠A=∠D,∠BCE=∠ACD.
    (1)求证:△ABC∽△DEC;
    (2)若S△ABC:S△DEC=4:9,BC=6,求EC的长.

    【解答】证明:(1)∵∠BCE=∠ACD.
    ∴∠BCE+∠ACE=∠ACD+∠ACE,
    ∴∠DCE=∠ACB,
    又∵∠A=∠D,
    ∴△ABC∽△DEC;
    (2)∵△ABC∽△DEC;
    ∴=()2=,
    又∵BC=6,
    ∴CE=9.
    10.(2020•湖北)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D的直线EF交AC于点F,交AB的延长线于点E,且∠BAC=2∠BDE.
    (1)求证:DF是⊙O的切线;
    (2)当CF=2,BE=3时,求AF的长.

    【解答】(1)证明:连接OD,AD,
    ∵AB是直径,
    ∴∠ADB=90°,
    ∴AD⊥BC,
    ∵AB=AC,
    ∴∠BAC=2∠BAD,
    ∵∠BAC=2∠BDE,
    ∴∠BDE=∠BAD,
    ∵OA=OD,
    ∴∠BAD=∠ADO,
    ∵∠ADO+∠ODB=90°,
    ∴∠BDE+∠ODB=90°,
    ∴∠ODE=90°,
    即DF⊥OD,
    ∵OD是⊙O的半径,
    ∴DF是⊙O的切线.
    (2)解:∵AB=AC,AD⊥BC,
    ∴BD=CD,
    ∵BO=AO,
    ∴OD∥AC,
    ∴△EOD∽△EAF,
    ∴,
    设OD=x,
    ∵CF=2,BE=3,
    ∴OA=OB=x,
    AF=AC﹣CF=2x﹣2,
    EO=x+3,EA=2x+3,
    ∴=,
    解得x=6,
    经检验,x=6是分式方程的解,
    ∴AF=2x﹣2=10.

    11.(2020•黄冈)已知:如图,AB是⊙O的直径,点E为⊙O上一点,点D是上一点,连接AE并延长至点C,使∠CBE=∠BDE,BD与AE交于点F.
    (1)求证:BC是⊙O的切线;
    (2)若BD平分∠ABE,求证:AD2=DF•DB.

    【解答】证明:(1)∵AB是⊙O的直径,
    ∴∠AEB=90°,
    ∴∠EAB+∠EBA=90°,
    ∵∠CBE=∠BDE,∠BDE=∠EAB,
    ∴∠EAB=∠CBE,
    ∴∠EBA+∠CBE=90°,即∠ABC=90°,
    ∴CB⊥AB,
    ∵AB是⊙O的直径,
    ∴BC是⊙O的切线;
    (2)证明:∵BD平分∠ABE,
    ∴∠ABD=∠DBE,
    ∵∠DAF=∠DBE,
    ∴∠DAF=∠ABD,
    ∵∠ADB=∠ADF,
    ∴△ADF∽△BDA,
    ∴,
    ∴AD2=DF•DB.

    相关试卷

    第27章+相似-【人教版-中考真题】九年级数学下册期末复习培优练习(内蒙古):

    这是一份第27章+相似-【人教版-中考真题】九年级数学下册期末复习培优练习(内蒙古),共21页。

    第27章+相似-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州):

    这是一份第27章+相似-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州),共13页。

    第27章相似-【人教版-中考真题】九年级数学上学期期末复习培优练习(广西):

    这是一份第27章相似-【人教版-中考真题】九年级数学上学期期末复习培优练习(广西),共22页。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map