年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    第24章+圆(选择题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北)

    立即下载
    加入资料篮
    第24章+圆(选择题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北)第1页
    第24章+圆(选择题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北)第2页
    第24章+圆(选择题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北)第3页
    还剩23页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第24章+圆(选择题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北)

    展开

    这是一份第24章+圆(选择题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北),共26页。
    第24章 圆(选择题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北)
    一.垂径定理(共3小题)
    1.(2022•荆门)如图,CD是圆O的弦,直径AB⊥CD,垂足为E,若AB=12,BE=3,则四边形ACBD的面积为(  )

    A.36 B.24 C.18 D.72
    2.(2021•鄂州)筒车是我国古代发明的一种水利灌溉工具,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理,如图1.筒车盛水桶的运行轨道是以轴心O为圆心的圆,如图2.已知圆心O在水面上方,且⊙O被水面截得的弦AB长为6米,⊙O半径长为4米.若点C为运行轨道的最低点,则点C到弦AB所在直线的距离是(  )

    A.1米 B.(4﹣)米 C.2米 D.(4+)米
    3.(2020•武汉)如图,在半径为3的⊙O中,AB是直径,AC是弦,D是的中点,AC与BD交于点E.若E是BD的中点,则AC的长是(  )

    A. B.3 C.3 D.4
    二.垂径定理的应用(共1小题)
    4.(2022•鄂州)工人师傅为检测该厂生产的一种铁球的大小是否符合要求,设计了一个如图(1)所示的工件槽,其两个底角均为90°,将形状规则的铁球放入槽内时,若同时具有图(1)所示的A、B、E三个接触点,该球的大小就符合要求.图(2)是过球心及A、B、E三点的截面示意图,已知⊙O的直径就是铁球的直径,AB是⊙O的弦,CD切⊙O于点E,AC⊥CD、BD⊥CD,若CD=16cm,AC=BD=4cm,则这种铁球的直径为(  )

    A.10cm B.15cm C.20cm D.24cm
    三.圆周角定理(共7小题)
    5.(2021•黄石)如图,A、B是⊙O上的两点,∠AOB=60°,OF⊥AB交⊙O于点F,则∠BAF等于(  )

    A.20° B.22.5° C.15° D.12.5°
    6.(2021•荆州)如图,矩形OABC的边OA,OC分别在x轴、y轴的正半轴上,点D在OA的延长线上,若A(2,0),D(4,0),以O为圆心、OD长为半径的弧经过点B,交y轴正半轴于点E,连接DE,BE,则∠BED的度数是(  )

    A.15° B.22.5° C.30° D.45°
    7.(2021•宜昌)如图,C,D是⊙O上直径AB两侧的两点,设∠ABC=25°,则∠BDC=(  )

    A.85° B.75° C.70° D.65°
    8.(2020•十堰)如图,点A,B,C,D在⊙O上,OA⊥BC,垂足为E.若∠ADC=30°,AE=1,则BC=(  )

    A.2 B.4 C. D.2
    9.(2020•黄石)如图,点A、B、C在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D、E,若∠DCE=40°,则∠ACB的度数为(  )

    A.140° B.70° C.110° D.80°
    10.(2020•宜昌)如图,E,F,G为圆上的三点,∠FEG=50°,P点可能是圆心的是(  )
    A. B.
    C. D.
    11.(2020•荆门)如图,⊙O中,OC⊥AB,∠APC=28°,则∠BOC的度数为(  )

    A.14° B.28° C.42° D.56°
    四.圆内接四边形的性质(共1小题)
    12.(2022•宜昌)如图,四边形ABCD内接于⊙O,连接OB,OD,BD,若∠C=110°,则∠OBD=(  )

    A.15° B.20° C.25° D.30°
    五.点与圆的位置关系(共1小题)
    13.(2021•鄂州)如图,Rt△ABC中,∠ACB=90°,AC=2,BC=3.点P为△ABC内一点,且满足PA2+PC2=AC2.当PB的长度最小时,△ACP的面积是(  )

    A.3 B.3 C. D.
    六.三角形的外接圆与外心(共3小题)
    14.(2022•十堰)如图,⊙O是等边△ABC的外接圆,点D是弧AC上一动点(不与A,C重合),下列结论:①∠ADB=∠BDC;②DA=DC;③当DB最长时,DB=2DC;④DA+DC=DB,其中一定正确的结论有(  )

    A.1个 B.2个 C.3个 D.4个
    15.(2021•十堰)如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD是⊙O的直径,若AD=3,则BC=(  )

    A.2 B.3 C.3 D.4
    16.(2021•孝感)如图,⊙O是Rt△ABC的外接圆,OE⊥AB交⊙O于点E,垂足为点D,AE,CB的延长线交于点F.若OD=3,AB=8,则FC的长是(  )

    A.10 B.8 C.6 D.4
    七.切线的性质(共2小题)
    17.(2022•武汉)如图,在四边形材料ABCD中,AD∥BC,∠A=90°,AD=9cm,AB=20cm,BC=24cm.现用此材料截出一个面积最大的圆形模板,则此圆的半径是(  )

    A.cm B.8cm C.6cm D.10cm
    18.(2021•荆门)如图,PA,PB是⊙O的切线,A,B是切点,若∠P=70°,则∠ABO=(  )

    A.30° B.35° C.45° D.55°
    八.三角形的内切圆与内心(共1小题)
    19.(2020•随州)设边长为a的等边三角形的高、内切圆的半径、外接圆的半径分别为h、r、R,则下列结论不正确的是(  )

    A.h=R+r B.R=2r C.r=a D.R=a
    九.弧长的计算(共1小题)
    20.(2022•湖北)如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,以点C为圆心,CA的长为半径画弧,交AB于点D,则的长为(  )

    A.π B.π C.π D.2π
    一十.扇形面积的计算(共3小题)
    21.(2022•湖北)一个扇形的弧长是10πcm,其圆心角是150°,此扇形的面积为(  )
    A.30πcm2 B.60πcm2 C.120πcm2 D.180πcm2
    22.(2022•荆州)如图,以边长为2的等边△ABC顶点A为圆心、一定的长为半径画弧,恰好与BC边相切,分别交AB,AC于D,E,则图中阴影部分的面积是(  )

    A.﹣ B.2﹣π C. D.﹣
    23.(2020•咸宁)如图,在⊙O中,OA=2,∠C=45°,则图中阴影部分的面积为(  )

    A.﹣ B.π﹣ C.﹣2 D.π﹣2
    一十一.圆锥的计算(共2小题)
    24.(2021•湖北)用半径为30cm,圆心角为120°的扇形纸片恰好能围成一个圆锥的侧面,则这个圆锥底面半径为(  )
    A.5cm B.10cm C.15cm D.20cm
    25.(2020•湖北)一个圆锥的底面半径是4cm,其侧面展开图的圆心角是120°,则圆锥的母线长是(  )
    A.8cm B.12cm C.16cm D.24cm

    第24章 圆(选择题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北)
    参考答案与试题解析
    一.垂径定理(共3小题)
    1.(2022•荆门)如图,CD是圆O的弦,直径AB⊥CD,垂足为E,若AB=12,BE=3,则四边形ACBD的面积为(  )

    A.36 B.24 C.18 D.72
    【解答】解:如图,连接OC,

    ∵AB=12,BE=3,
    ∴OB=OC=6,OE=3,
    ∵AB⊥CD,
    在Rt△COE中,EC=,
    ∴CD=2CE=6,
    ∴四边形ACBD的面积=.
    故选:A.
    2.(2021•鄂州)筒车是我国古代发明的一种水利灌溉工具,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理,如图1.筒车盛水桶的运行轨道是以轴心O为圆心的圆,如图2.已知圆心O在水面上方,且⊙O被水面截得的弦AB长为6米,⊙O半径长为4米.若点C为运行轨道的最低点,则点C到弦AB所在直线的距离是(  )

    A.1米 B.(4﹣)米 C.2米 D.(4+)米
    【解答】解:连接OC交AB于D,连接OA,
    ∵点C为运行轨道的最低点,
    ∴OC⊥AB,
    ∴AD=AB=3(米),
    在Rt△OAD中,OD===(米),
    ∴点C到弦AB所在直线的距离CD=OC﹣OD=(4﹣)米,
    故选:B.

    3.(2020•武汉)如图,在半径为3的⊙O中,AB是直径,AC是弦,D是的中点,AC与BD交于点E.若E是BD的中点,则AC的长是(  )

    A. B.3 C.3 D.4
    【解答】解:连接OD,交AC于F,
    ∵D是的中点,
    ∴OD⊥AC,AF=CF,
    ∴∠DFE=90°,
    ∵OA=OB,AF=CF,
    ∴OF=BC,
    ∵AB是直径,
    ∴∠ACB=90°,
    在△EFD和△ECB中

    ∴△EFD≌△ECB(AAS),
    ∴DF=BC,
    ∴OF=DF,
    ∵OD=3,
    ∴OF=1,
    ∴BC=2,
    在Rt△ABC中,AC2=AB2﹣BC2,
    ∴AC===4,
    故选:D.

    二.垂径定理的应用(共1小题)
    4.(2022•鄂州)工人师傅为检测该厂生产的一种铁球的大小是否符合要求,设计了一个如图(1)所示的工件槽,其两个底角均为90°,将形状规则的铁球放入槽内时,若同时具有图(1)所示的A、B、E三个接触点,该球的大小就符合要求.图(2)是过球心及A、B、E三点的截面示意图,已知⊙O的直径就是铁球的直径,AB是⊙O的弦,CD切⊙O于点E,AC⊥CD、BD⊥CD,若CD=16cm,AC=BD=4cm,则这种铁球的直径为(  )

    A.10cm B.15cm C.20cm D.24cm
    【解答】解:如图,连接OE,交AB于点F,连接OA,

    ∵AC⊥CD、BD⊥CD,
    ∴AC∥BD,
    ∵AC=BD=4cm,
    ∴四边形ACDB是平行四边形,
    ∴四边形ACDB是矩形,
    ∴AB∥CD,AB=CD=16cm,
    ∵CD切⊙O于点E,
    ∴OE⊥CD,
    ∴OE⊥AB,
    ∴四边形EFBD是矩形,AF=AB=×16=8(cm),
    ∴EF=BD=4cm,
    设⊙O的半径为rcm,则OA=rcm,OF=OE﹣EF=(r﹣4)cm,
    在Rt△AOF中,OA2=AF2+OF2,
    ∴r2=82+(r﹣4)2,
    解得:r=10,
    ∴这种铁球的直径为20cm,
    故选:C.
    三.圆周角定理(共7小题)
    5.(2021•黄石)如图,A、B是⊙O上的两点,∠AOB=60°,OF⊥AB交⊙O于点F,则∠BAF等于(  )

    A.20° B.22.5° C.15° D.12.5°
    【解答】解:∵OF⊥AB,
    ∴=,
    ∴∠AOF=∠BOF=∠AOB=×60°=30°,
    ∴∠BAF=∠BOF=×30°=15°.
    故选:C.
    6.(2021•荆州)如图,矩形OABC的边OA,OC分别在x轴、y轴的正半轴上,点D在OA的延长线上,若A(2,0),D(4,0),以O为圆心、OD长为半径的弧经过点B,交y轴正半轴于点E,连接DE,BE,则∠BED的度数是(  )

    A.15° B.22.5° C.30° D.45°
    【解答】解:如图,连接OB,
    ∵A(2,0),D(4,0),矩形OABC,
    ∴OA=2,OD=4=OB,
    ∴sin∠OBA==,
    ∴∠OBA=30°,
    ∴∠BOD=90°﹣30°=60°,
    ∴∠BED=∠BOD=×60°=30°,
    故选:C.

    7.(2021•宜昌)如图,C,D是⊙O上直径AB两侧的两点,设∠ABC=25°,则∠BDC=(  )

    A.85° B.75° C.70° D.65°
    【解答】解:连接OC,如图,
    ∵∠ABC=25°,
    ∴∠AOC=2∠ABC=2×25°=50°,
    ∴∠BOC=180°﹣∠AOC=180°﹣50°=130°,
    ∴.
    解法二:因为AB是直径,
    所以∠ACB=90°
    所以∠BDC=∠CAB=90°﹣∠ABC=65°.
    故选:D.

    8.(2020•十堰)如图,点A,B,C,D在⊙O上,OA⊥BC,垂足为E.若∠ADC=30°,AE=1,则BC=(  )

    A.2 B.4 C. D.2
    【解答】解:连接OC,如图,
    ∵∠ADC=30°,
    ∴∠AOC=60°,
    ∵OA⊥BC,
    ∴CE=BE,
    在Rt△COE中,OE=OC,CE=OE,
    ∵OE=OA﹣AE=OC﹣1,
    ∴OC﹣1=OC,
    ∴OC=2,
    ∴OE=1,
    ∴CE=,
    ∴BC=2CE=2.
    故选:D.

    9.(2020•黄石)如图,点A、B、C在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D、E,若∠DCE=40°,则∠ACB的度数为(  )

    A.140° B.70° C.110° D.80°
    【解答】解:如图,在优弧AB上取一点P,连接AP,BP,
    ∵CD⊥OA,CE⊥OB,
    ∴∠ODC=∠OEC=90°,
    ∵∠DCE=40°,
    ∴∠AOB=360°﹣90°﹣90°﹣40°=140°,
    ∴∠P=∠AOB=70°,
    ∵A、C、B、P四点共圆,
    ∴∠P+∠ACB=180°,
    ∴∠ACB=180°﹣70°=110°,
    故选:C.

    10.(2020•宜昌)如图,E,F,G为圆上的三点,∠FEG=50°,P点可能是圆心的是(  )
    A. B.
    C. D.
    【解答】解:∵∠FEG=50°,
    若P点圆心,
    ∴∠FPG=2∠FEG=100°.
    故选:C.
    11.(2020•荆门)如图,⊙O中,OC⊥AB,∠APC=28°,则∠BOC的度数为(  )

    A.14° B.28° C.42° D.56°
    【解答】解:∵在⊙O中,OC⊥AB,
    ∴=,
    ∵∠APC=28°,
    ∴∠BOC=2∠APC=56°,
    故选:D.
    四.圆内接四边形的性质(共1小题)
    12.(2022•宜昌)如图,四边形ABCD内接于⊙O,连接OB,OD,BD,若∠C=110°,则∠OBD=(  )

    A.15° B.20° C.25° D.30°
    【解答】解:∵四边形ABCD是圆内接四边形,∠C=110°,
    ∴∠A=70°,
    ∵∠BOD=2∠A=140°,
    ∵OB=OD,
    ∴∠OBD=∠ODB,
    ∵∠OBD+∠ODB+∠BOD=180°,
    ∴∠OBD=20°,
    故选:B.
    五.点与圆的位置关系(共1小题)
    13.(2021•鄂州)如图,Rt△ABC中,∠ACB=90°,AC=2,BC=3.点P为△ABC内一点,且满足PA2+PC2=AC2.当PB的长度最小时,△ACP的面积是(  )

    A.3 B.3 C. D.
    【解答】解:取AC中点O,连接OP,BO,

    ∵PA2+PC2=AC2,
    ∴∠APC=90°,
    ∴点P在以AC为直径的圆上运动,
    在△BPO中,BP≥BO﹣OP,
    ∴当点P在线段BO上时,BP有最小值,
    ∵点O是AC的中点,∠APC=90°,
    ∴PO=AO=CO=,
    ∵tan∠BOC==,
    ∴∠BOC=60°,
    ∴△COP是等边三角形,
    ∴S△COP=OC2=×3=,
    ∵OA=OC,
    ∴△ACP的面积=2S△COP=,
    故选:D.
    六.三角形的外接圆与外心(共3小题)
    14.(2022•十堰)如图,⊙O是等边△ABC的外接圆,点D是弧AC上一动点(不与A,C重合),下列结论:①∠ADB=∠BDC;②DA=DC;③当DB最长时,DB=2DC;④DA+DC=DB,其中一定正确的结论有(  )

    A.1个 B.2个 C.3个 D.4个
    【解答】解:∵△ABC是等边三角形,
    ∴∠BAC=∠ACB=60°,
    ∵=,=,
    ∴∠ADB=∠ACB=60°,∠BDC=∠BAC=60°,
    ∴∠ADB=∠BDC,故①正确;
    ∵点D是弧AC上一动点,
    ∴与不一定相等,
    ∴DA与DC不一定相等,故②错误;
    当DB最长时,DB为⊙O直径,
    ∴∠BCD=90°,
    ∵∠BDC=60°,
    ∴∠DBC=30°,
    ∴DB=2DC,故③正确;
    在DB上取一点E,使DE=AD,如图:

    ∵∠ADB=60°,
    ∴△ADE是等边三角形,
    ∴AD=AE,∠DAE=60°,
    ∵∠BAC=60°,
    ∴∠BAE=∠CAD,
    ∵AB=AC,
    ∴△ABE≌△ACD(SAS),
    ∴BE=CD,
    ∴BD=BE+DE=CD+AD,故④正确;
    ∴正确的有①③④,共3个,
    故选:C.
    15.(2021•十堰)如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD是⊙O的直径,若AD=3,则BC=(  )

    A.2 B.3 C.3 D.4
    【解答】解:过点O作OE⊥BC于点E,如图所示:

    ∵∠BAC=120°,AB=AC,
    ∴∠ABC=∠ACB=30°,
    又∵对应圆周角为∠ACB和∠ADB,
    ∴∠ACB=∠ADB=30°,
    而BD为直径,
    ∴∠BAD=90°,
    在Rt△BAD中,∠ADB=30°,AD=3,
    ∴cos30°===,
    ∴BD=2,
    ∴OB=,
    又∵∠ABD=90°﹣∠ADB=90°﹣30°=60°,∠ABC=30°,
    ∴∠OBE=30°,
    又∵OE⊥BC,
    ∴△OBE为直角三角形,
    ∴cos∠OBE=cos30°==,
    ∴BE=,
    由垂径定理可得:BC=2BE=2×=3,故C正确,
    故选:C.
    16.(2021•孝感)如图,⊙O是Rt△ABC的外接圆,OE⊥AB交⊙O于点E,垂足为点D,AE,CB的延长线交于点F.若OD=3,AB=8,则FC的长是(  )

    A.10 B.8 C.6 D.4
    【解答】解:由题知,AC为直径,
    ∴∠ABC=90°,
    ∵OE⊥AB,
    ∴OD∥BC,
    ∵OA=OC,
    ∴OD为三角形ABC的中位线,
    ∴AD=AB=×8=4,
    又∵OD=3,
    ∴OA===5,
    ∴OE=OA=5,
    ∵OE∥CF,点O是AC中点,
    ∴OE是三角形ACF的中位线,
    ∴CF=2OE=2×5=10,
    故选:A.
    七.切线的性质(共2小题)
    17.(2022•武汉)如图,在四边形材料ABCD中,AD∥BC,∠A=90°,AD=9cm,AB=20cm,BC=24cm.现用此材料截出一个面积最大的圆形模板,则此圆的半径是(  )

    A.cm B.8cm C.6cm D.10cm
    【解答】解:如图,当AB,BC,CD相切于⊙O于点E,F,G时,⊙O的面积最大.连接OA,OB,OC,OD,OE,OF,OG,过点D作DH⊥BC于点H.

    ∵AD∥CB,∠BAD=90°,
    ∴∠ABC=90°,
    ∵∠DHB=90°,
    ∴四边形ABHD是矩形,
    ∴AB=DH=20cm,AD=BH=9cm,
    ∵BC=24cm,
    ∴CH=BC﹣BH=24﹣9=15(cm),
    ∴CD===25(cm),
    设OE=OF=OG=rcm,
    则有×(9+24)×20=×20×r+×24×r+×25×r+×9×(20﹣r),
    ∴r=8,
    故选:B.
    18.(2021•荆门)如图,PA,PB是⊙O的切线,A,B是切点,若∠P=70°,则∠ABO=(  )

    A.30° B.35° C.45° D.55°
    【解答】解:连接OA,
    ∵PA,PB是⊙O的切线,A,B是切点,
    ∴∠PBO=∠PAO=90°,
    ∵∠P=70°,
    ∴∠BOA=360°﹣∠PBO﹣∠PAO﹣∠P=110°,
    ∵OA=OB,
    ∴∠ABO=∠BAO=(180°﹣∠BOA)=(180°﹣110°)=35°,
    故选:B.

    八.三角形的内切圆与内心(共1小题)
    19.(2020•随州)设边长为a的等边三角形的高、内切圆的半径、外接圆的半径分别为h、r、R,则下列结论不正确的是(  )

    A.h=R+r B.R=2r C.r=a D.R=a
    【解答】解:如图,∵△ABC是等边三角形,
    ∴△ABC的内切圆和外接圆是同心圆,圆心为O,
    设OE=r,AO=R,AD=h,
    ∴h=R+r,故A正确;
    ∵AD⊥BC,
    ∴∠DAC=∠BAC=×60°=30°,
    在Rt△AOE中,
    ∴R=2r,故B正确;
    ∵OD=OE=r,
    ∵AB=AC=BC=a,
    ∴AE=AC=a,
    ∴(a)2+r2=(2r)2,(a)2+(R)2=R2,
    ∴r=,R=a,故C错误,D正确;
    故选:C.

    九.弧长的计算(共1小题)
    20.(2022•湖北)如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,以点C为圆心,CA的长为半径画弧,交AB于点D,则的长为(  )

    A.π B.π C.π D.2π
    【解答】解:连接CD,如图所示:

    ∵∠ACB=90°,∠B=30°,AB=8,
    ∴∠A=90°﹣30°=60°,AC==4,
    由题意得:AC=CD,
    ∴△ACD为等边三角形,
    ∴∠ACD=60°,
    ∴的长为:,
    故选:B.
    一十.扇形面积的计算(共3小题)
    21.(2022•湖北)一个扇形的弧长是10πcm,其圆心角是150°,此扇形的面积为(  )
    A.30πcm2 B.60πcm2 C.120πcm2 D.180πcm2
    【解答】解:根据题意可得,
    设扇形的半径为rcm,
    则l=,
    即10π=,
    解得:r=12,
    ∴S===60π(cm2).
    故选:B.
    22.(2022•荆州)如图,以边长为2的等边△ABC顶点A为圆心、一定的长为半径画弧,恰好与BC边相切,分别交AB,AC于D,E,则图中阴影部分的面积是(  )

    A.﹣ B.2﹣π C. D.﹣
    【解答】解:由题意,以A为圆心、一定的长为半径画弧,恰好与BC边相切,
    设切点为F,连接AF,则AF⊥BC.

    在等边△ABC中,AB=AC=BC=2,∠BAC=60°,
    ∴CF=BF=1.
    在Rt△ACF中,AF==,
    ∴S阴影=S△ABC﹣S扇形ADE
    =×2×﹣
    =﹣,
    故选:D.
    23.(2020•咸宁)如图,在⊙O中,OA=2,∠C=45°,则图中阴影部分的面积为(  )

    A.﹣ B.π﹣ C.﹣2 D.π﹣2
    【解答】解:∵∠C=45°,
    ∴∠AOB=90°,
    ∴S阴影=S扇形AOB﹣S△AOB
    =﹣
    =π﹣2.
    故选:D.
    一十一.圆锥的计算(共2小题)
    24.(2021•湖北)用半径为30cm,圆心角为120°的扇形纸片恰好能围成一个圆锥的侧面,则这个圆锥底面半径为(  )
    A.5cm B.10cm C.15cm D.20cm
    【解答】解:设圆锥的底面圆半径为rcm,依题意,得
    2πr=,
    解得r=10.
    故选:B.
    25.(2020•湖北)一个圆锥的底面半径是4cm,其侧面展开图的圆心角是120°,则圆锥的母线长是(  )
    A.8cm B.12cm C.16cm D.24cm
    【解答】解:圆锥的底面周长为2π×4=8πcm,即为展开图扇形的弧长,
    由弧长公式得=8π,
    解得,R=12,即圆锥的母线长为12cm.
    故选:B.

    相关试卷

    第29章投影与视图(选择题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北):

    这是一份第29章投影与视图(选择题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北),共23页。

    第24章圆-【人教版-中考真题】九年级数学上学期期末复习培优练习(广西):

    这是一份第24章圆-【人教版-中考真题】九年级数学上学期期末复习培优练习(广西),共49页。

    第24章+圆(填空题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北):

    这是一份第24章+圆(填空题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北),共20页。

    文档详情页底部广告位
    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map