所属成套资源:[中考真题】各版本各地区九年级数学上学期期末复习培优练习
第24章+圆(选择题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北)
展开
这是一份第24章+圆(选择题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北),共26页。
第24章 圆(选择题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北)
一.垂径定理(共3小题)
1.(2022•荆门)如图,CD是圆O的弦,直径AB⊥CD,垂足为E,若AB=12,BE=3,则四边形ACBD的面积为( )
A.36 B.24 C.18 D.72
2.(2021•鄂州)筒车是我国古代发明的一种水利灌溉工具,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理,如图1.筒车盛水桶的运行轨道是以轴心O为圆心的圆,如图2.已知圆心O在水面上方,且⊙O被水面截得的弦AB长为6米,⊙O半径长为4米.若点C为运行轨道的最低点,则点C到弦AB所在直线的距离是( )
A.1米 B.(4﹣)米 C.2米 D.(4+)米
3.(2020•武汉)如图,在半径为3的⊙O中,AB是直径,AC是弦,D是的中点,AC与BD交于点E.若E是BD的中点,则AC的长是( )
A. B.3 C.3 D.4
二.垂径定理的应用(共1小题)
4.(2022•鄂州)工人师傅为检测该厂生产的一种铁球的大小是否符合要求,设计了一个如图(1)所示的工件槽,其两个底角均为90°,将形状规则的铁球放入槽内时,若同时具有图(1)所示的A、B、E三个接触点,该球的大小就符合要求.图(2)是过球心及A、B、E三点的截面示意图,已知⊙O的直径就是铁球的直径,AB是⊙O的弦,CD切⊙O于点E,AC⊥CD、BD⊥CD,若CD=16cm,AC=BD=4cm,则这种铁球的直径为( )
A.10cm B.15cm C.20cm D.24cm
三.圆周角定理(共7小题)
5.(2021•黄石)如图,A、B是⊙O上的两点,∠AOB=60°,OF⊥AB交⊙O于点F,则∠BAF等于( )
A.20° B.22.5° C.15° D.12.5°
6.(2021•荆州)如图,矩形OABC的边OA,OC分别在x轴、y轴的正半轴上,点D在OA的延长线上,若A(2,0),D(4,0),以O为圆心、OD长为半径的弧经过点B,交y轴正半轴于点E,连接DE,BE,则∠BED的度数是( )
A.15° B.22.5° C.30° D.45°
7.(2021•宜昌)如图,C,D是⊙O上直径AB两侧的两点,设∠ABC=25°,则∠BDC=( )
A.85° B.75° C.70° D.65°
8.(2020•十堰)如图,点A,B,C,D在⊙O上,OA⊥BC,垂足为E.若∠ADC=30°,AE=1,则BC=( )
A.2 B.4 C. D.2
9.(2020•黄石)如图,点A、B、C在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D、E,若∠DCE=40°,则∠ACB的度数为( )
A.140° B.70° C.110° D.80°
10.(2020•宜昌)如图,E,F,G为圆上的三点,∠FEG=50°,P点可能是圆心的是( )
A. B.
C. D.
11.(2020•荆门)如图,⊙O中,OC⊥AB,∠APC=28°,则∠BOC的度数为( )
A.14° B.28° C.42° D.56°
四.圆内接四边形的性质(共1小题)
12.(2022•宜昌)如图,四边形ABCD内接于⊙O,连接OB,OD,BD,若∠C=110°,则∠OBD=( )
A.15° B.20° C.25° D.30°
五.点与圆的位置关系(共1小题)
13.(2021•鄂州)如图,Rt△ABC中,∠ACB=90°,AC=2,BC=3.点P为△ABC内一点,且满足PA2+PC2=AC2.当PB的长度最小时,△ACP的面积是( )
A.3 B.3 C. D.
六.三角形的外接圆与外心(共3小题)
14.(2022•十堰)如图,⊙O是等边△ABC的外接圆,点D是弧AC上一动点(不与A,C重合),下列结论:①∠ADB=∠BDC;②DA=DC;③当DB最长时,DB=2DC;④DA+DC=DB,其中一定正确的结论有( )
A.1个 B.2个 C.3个 D.4个
15.(2021•十堰)如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD是⊙O的直径,若AD=3,则BC=( )
A.2 B.3 C.3 D.4
16.(2021•孝感)如图,⊙O是Rt△ABC的外接圆,OE⊥AB交⊙O于点E,垂足为点D,AE,CB的延长线交于点F.若OD=3,AB=8,则FC的长是( )
A.10 B.8 C.6 D.4
七.切线的性质(共2小题)
17.(2022•武汉)如图,在四边形材料ABCD中,AD∥BC,∠A=90°,AD=9cm,AB=20cm,BC=24cm.现用此材料截出一个面积最大的圆形模板,则此圆的半径是( )
A.cm B.8cm C.6cm D.10cm
18.(2021•荆门)如图,PA,PB是⊙O的切线,A,B是切点,若∠P=70°,则∠ABO=( )
A.30° B.35° C.45° D.55°
八.三角形的内切圆与内心(共1小题)
19.(2020•随州)设边长为a的等边三角形的高、内切圆的半径、外接圆的半径分别为h、r、R,则下列结论不正确的是( )
A.h=R+r B.R=2r C.r=a D.R=a
九.弧长的计算(共1小题)
20.(2022•湖北)如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,以点C为圆心,CA的长为半径画弧,交AB于点D,则的长为( )
A.π B.π C.π D.2π
一十.扇形面积的计算(共3小题)
21.(2022•湖北)一个扇形的弧长是10πcm,其圆心角是150°,此扇形的面积为( )
A.30πcm2 B.60πcm2 C.120πcm2 D.180πcm2
22.(2022•荆州)如图,以边长为2的等边△ABC顶点A为圆心、一定的长为半径画弧,恰好与BC边相切,分别交AB,AC于D,E,则图中阴影部分的面积是( )
A.﹣ B.2﹣π C. D.﹣
23.(2020•咸宁)如图,在⊙O中,OA=2,∠C=45°,则图中阴影部分的面积为( )
A.﹣ B.π﹣ C.﹣2 D.π﹣2
一十一.圆锥的计算(共2小题)
24.(2021•湖北)用半径为30cm,圆心角为120°的扇形纸片恰好能围成一个圆锥的侧面,则这个圆锥底面半径为( )
A.5cm B.10cm C.15cm D.20cm
25.(2020•湖北)一个圆锥的底面半径是4cm,其侧面展开图的圆心角是120°,则圆锥的母线长是( )
A.8cm B.12cm C.16cm D.24cm
第24章 圆(选择题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北)
参考答案与试题解析
一.垂径定理(共3小题)
1.(2022•荆门)如图,CD是圆O的弦,直径AB⊥CD,垂足为E,若AB=12,BE=3,则四边形ACBD的面积为( )
A.36 B.24 C.18 D.72
【解答】解:如图,连接OC,
∵AB=12,BE=3,
∴OB=OC=6,OE=3,
∵AB⊥CD,
在Rt△COE中,EC=,
∴CD=2CE=6,
∴四边形ACBD的面积=.
故选:A.
2.(2021•鄂州)筒车是我国古代发明的一种水利灌溉工具,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理,如图1.筒车盛水桶的运行轨道是以轴心O为圆心的圆,如图2.已知圆心O在水面上方,且⊙O被水面截得的弦AB长为6米,⊙O半径长为4米.若点C为运行轨道的最低点,则点C到弦AB所在直线的距离是( )
A.1米 B.(4﹣)米 C.2米 D.(4+)米
【解答】解:连接OC交AB于D,连接OA,
∵点C为运行轨道的最低点,
∴OC⊥AB,
∴AD=AB=3(米),
在Rt△OAD中,OD===(米),
∴点C到弦AB所在直线的距离CD=OC﹣OD=(4﹣)米,
故选:B.
3.(2020•武汉)如图,在半径为3的⊙O中,AB是直径,AC是弦,D是的中点,AC与BD交于点E.若E是BD的中点,则AC的长是( )
A. B.3 C.3 D.4
【解答】解:连接OD,交AC于F,
∵D是的中点,
∴OD⊥AC,AF=CF,
∴∠DFE=90°,
∵OA=OB,AF=CF,
∴OF=BC,
∵AB是直径,
∴∠ACB=90°,
在△EFD和△ECB中
∴△EFD≌△ECB(AAS),
∴DF=BC,
∴OF=DF,
∵OD=3,
∴OF=1,
∴BC=2,
在Rt△ABC中,AC2=AB2﹣BC2,
∴AC===4,
故选:D.
二.垂径定理的应用(共1小题)
4.(2022•鄂州)工人师傅为检测该厂生产的一种铁球的大小是否符合要求,设计了一个如图(1)所示的工件槽,其两个底角均为90°,将形状规则的铁球放入槽内时,若同时具有图(1)所示的A、B、E三个接触点,该球的大小就符合要求.图(2)是过球心及A、B、E三点的截面示意图,已知⊙O的直径就是铁球的直径,AB是⊙O的弦,CD切⊙O于点E,AC⊥CD、BD⊥CD,若CD=16cm,AC=BD=4cm,则这种铁球的直径为( )
A.10cm B.15cm C.20cm D.24cm
【解答】解:如图,连接OE,交AB于点F,连接OA,
∵AC⊥CD、BD⊥CD,
∴AC∥BD,
∵AC=BD=4cm,
∴四边形ACDB是平行四边形,
∴四边形ACDB是矩形,
∴AB∥CD,AB=CD=16cm,
∵CD切⊙O于点E,
∴OE⊥CD,
∴OE⊥AB,
∴四边形EFBD是矩形,AF=AB=×16=8(cm),
∴EF=BD=4cm,
设⊙O的半径为rcm,则OA=rcm,OF=OE﹣EF=(r﹣4)cm,
在Rt△AOF中,OA2=AF2+OF2,
∴r2=82+(r﹣4)2,
解得:r=10,
∴这种铁球的直径为20cm,
故选:C.
三.圆周角定理(共7小题)
5.(2021•黄石)如图,A、B是⊙O上的两点,∠AOB=60°,OF⊥AB交⊙O于点F,则∠BAF等于( )
A.20° B.22.5° C.15° D.12.5°
【解答】解:∵OF⊥AB,
∴=,
∴∠AOF=∠BOF=∠AOB=×60°=30°,
∴∠BAF=∠BOF=×30°=15°.
故选:C.
6.(2021•荆州)如图,矩形OABC的边OA,OC分别在x轴、y轴的正半轴上,点D在OA的延长线上,若A(2,0),D(4,0),以O为圆心、OD长为半径的弧经过点B,交y轴正半轴于点E,连接DE,BE,则∠BED的度数是( )
A.15° B.22.5° C.30° D.45°
【解答】解:如图,连接OB,
∵A(2,0),D(4,0),矩形OABC,
∴OA=2,OD=4=OB,
∴sin∠OBA==,
∴∠OBA=30°,
∴∠BOD=90°﹣30°=60°,
∴∠BED=∠BOD=×60°=30°,
故选:C.
7.(2021•宜昌)如图,C,D是⊙O上直径AB两侧的两点,设∠ABC=25°,则∠BDC=( )
A.85° B.75° C.70° D.65°
【解答】解:连接OC,如图,
∵∠ABC=25°,
∴∠AOC=2∠ABC=2×25°=50°,
∴∠BOC=180°﹣∠AOC=180°﹣50°=130°,
∴.
解法二:因为AB是直径,
所以∠ACB=90°
所以∠BDC=∠CAB=90°﹣∠ABC=65°.
故选:D.
8.(2020•十堰)如图,点A,B,C,D在⊙O上,OA⊥BC,垂足为E.若∠ADC=30°,AE=1,则BC=( )
A.2 B.4 C. D.2
【解答】解:连接OC,如图,
∵∠ADC=30°,
∴∠AOC=60°,
∵OA⊥BC,
∴CE=BE,
在Rt△COE中,OE=OC,CE=OE,
∵OE=OA﹣AE=OC﹣1,
∴OC﹣1=OC,
∴OC=2,
∴OE=1,
∴CE=,
∴BC=2CE=2.
故选:D.
9.(2020•黄石)如图,点A、B、C在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D、E,若∠DCE=40°,则∠ACB的度数为( )
A.140° B.70° C.110° D.80°
【解答】解:如图,在优弧AB上取一点P,连接AP,BP,
∵CD⊥OA,CE⊥OB,
∴∠ODC=∠OEC=90°,
∵∠DCE=40°,
∴∠AOB=360°﹣90°﹣90°﹣40°=140°,
∴∠P=∠AOB=70°,
∵A、C、B、P四点共圆,
∴∠P+∠ACB=180°,
∴∠ACB=180°﹣70°=110°,
故选:C.
10.(2020•宜昌)如图,E,F,G为圆上的三点,∠FEG=50°,P点可能是圆心的是( )
A. B.
C. D.
【解答】解:∵∠FEG=50°,
若P点圆心,
∴∠FPG=2∠FEG=100°.
故选:C.
11.(2020•荆门)如图,⊙O中,OC⊥AB,∠APC=28°,则∠BOC的度数为( )
A.14° B.28° C.42° D.56°
【解答】解:∵在⊙O中,OC⊥AB,
∴=,
∵∠APC=28°,
∴∠BOC=2∠APC=56°,
故选:D.
四.圆内接四边形的性质(共1小题)
12.(2022•宜昌)如图,四边形ABCD内接于⊙O,连接OB,OD,BD,若∠C=110°,则∠OBD=( )
A.15° B.20° C.25° D.30°
【解答】解:∵四边形ABCD是圆内接四边形,∠C=110°,
∴∠A=70°,
∵∠BOD=2∠A=140°,
∵OB=OD,
∴∠OBD=∠ODB,
∵∠OBD+∠ODB+∠BOD=180°,
∴∠OBD=20°,
故选:B.
五.点与圆的位置关系(共1小题)
13.(2021•鄂州)如图,Rt△ABC中,∠ACB=90°,AC=2,BC=3.点P为△ABC内一点,且满足PA2+PC2=AC2.当PB的长度最小时,△ACP的面积是( )
A.3 B.3 C. D.
【解答】解:取AC中点O,连接OP,BO,
∵PA2+PC2=AC2,
∴∠APC=90°,
∴点P在以AC为直径的圆上运动,
在△BPO中,BP≥BO﹣OP,
∴当点P在线段BO上时,BP有最小值,
∵点O是AC的中点,∠APC=90°,
∴PO=AO=CO=,
∵tan∠BOC==,
∴∠BOC=60°,
∴△COP是等边三角形,
∴S△COP=OC2=×3=,
∵OA=OC,
∴△ACP的面积=2S△COP=,
故选:D.
六.三角形的外接圆与外心(共3小题)
14.(2022•十堰)如图,⊙O是等边△ABC的外接圆,点D是弧AC上一动点(不与A,C重合),下列结论:①∠ADB=∠BDC;②DA=DC;③当DB最长时,DB=2DC;④DA+DC=DB,其中一定正确的结论有( )
A.1个 B.2个 C.3个 D.4个
【解答】解:∵△ABC是等边三角形,
∴∠BAC=∠ACB=60°,
∵=,=,
∴∠ADB=∠ACB=60°,∠BDC=∠BAC=60°,
∴∠ADB=∠BDC,故①正确;
∵点D是弧AC上一动点,
∴与不一定相等,
∴DA与DC不一定相等,故②错误;
当DB最长时,DB为⊙O直径,
∴∠BCD=90°,
∵∠BDC=60°,
∴∠DBC=30°,
∴DB=2DC,故③正确;
在DB上取一点E,使DE=AD,如图:
∵∠ADB=60°,
∴△ADE是等边三角形,
∴AD=AE,∠DAE=60°,
∵∠BAC=60°,
∴∠BAE=∠CAD,
∵AB=AC,
∴△ABE≌△ACD(SAS),
∴BE=CD,
∴BD=BE+DE=CD+AD,故④正确;
∴正确的有①③④,共3个,
故选:C.
15.(2021•十堰)如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD是⊙O的直径,若AD=3,则BC=( )
A.2 B.3 C.3 D.4
【解答】解:过点O作OE⊥BC于点E,如图所示:
∵∠BAC=120°,AB=AC,
∴∠ABC=∠ACB=30°,
又∵对应圆周角为∠ACB和∠ADB,
∴∠ACB=∠ADB=30°,
而BD为直径,
∴∠BAD=90°,
在Rt△BAD中,∠ADB=30°,AD=3,
∴cos30°===,
∴BD=2,
∴OB=,
又∵∠ABD=90°﹣∠ADB=90°﹣30°=60°,∠ABC=30°,
∴∠OBE=30°,
又∵OE⊥BC,
∴△OBE为直角三角形,
∴cos∠OBE=cos30°==,
∴BE=,
由垂径定理可得:BC=2BE=2×=3,故C正确,
故选:C.
16.(2021•孝感)如图,⊙O是Rt△ABC的外接圆,OE⊥AB交⊙O于点E,垂足为点D,AE,CB的延长线交于点F.若OD=3,AB=8,则FC的长是( )
A.10 B.8 C.6 D.4
【解答】解:由题知,AC为直径,
∴∠ABC=90°,
∵OE⊥AB,
∴OD∥BC,
∵OA=OC,
∴OD为三角形ABC的中位线,
∴AD=AB=×8=4,
又∵OD=3,
∴OA===5,
∴OE=OA=5,
∵OE∥CF,点O是AC中点,
∴OE是三角形ACF的中位线,
∴CF=2OE=2×5=10,
故选:A.
七.切线的性质(共2小题)
17.(2022•武汉)如图,在四边形材料ABCD中,AD∥BC,∠A=90°,AD=9cm,AB=20cm,BC=24cm.现用此材料截出一个面积最大的圆形模板,则此圆的半径是( )
A.cm B.8cm C.6cm D.10cm
【解答】解:如图,当AB,BC,CD相切于⊙O于点E,F,G时,⊙O的面积最大.连接OA,OB,OC,OD,OE,OF,OG,过点D作DH⊥BC于点H.
∵AD∥CB,∠BAD=90°,
∴∠ABC=90°,
∵∠DHB=90°,
∴四边形ABHD是矩形,
∴AB=DH=20cm,AD=BH=9cm,
∵BC=24cm,
∴CH=BC﹣BH=24﹣9=15(cm),
∴CD===25(cm),
设OE=OF=OG=rcm,
则有×(9+24)×20=×20×r+×24×r+×25×r+×9×(20﹣r),
∴r=8,
故选:B.
18.(2021•荆门)如图,PA,PB是⊙O的切线,A,B是切点,若∠P=70°,则∠ABO=( )
A.30° B.35° C.45° D.55°
【解答】解:连接OA,
∵PA,PB是⊙O的切线,A,B是切点,
∴∠PBO=∠PAO=90°,
∵∠P=70°,
∴∠BOA=360°﹣∠PBO﹣∠PAO﹣∠P=110°,
∵OA=OB,
∴∠ABO=∠BAO=(180°﹣∠BOA)=(180°﹣110°)=35°,
故选:B.
八.三角形的内切圆与内心(共1小题)
19.(2020•随州)设边长为a的等边三角形的高、内切圆的半径、外接圆的半径分别为h、r、R,则下列结论不正确的是( )
A.h=R+r B.R=2r C.r=a D.R=a
【解答】解:如图,∵△ABC是等边三角形,
∴△ABC的内切圆和外接圆是同心圆,圆心为O,
设OE=r,AO=R,AD=h,
∴h=R+r,故A正确;
∵AD⊥BC,
∴∠DAC=∠BAC=×60°=30°,
在Rt△AOE中,
∴R=2r,故B正确;
∵OD=OE=r,
∵AB=AC=BC=a,
∴AE=AC=a,
∴(a)2+r2=(2r)2,(a)2+(R)2=R2,
∴r=,R=a,故C错误,D正确;
故选:C.
九.弧长的计算(共1小题)
20.(2022•湖北)如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,以点C为圆心,CA的长为半径画弧,交AB于点D,则的长为( )
A.π B.π C.π D.2π
【解答】解:连接CD,如图所示:
∵∠ACB=90°,∠B=30°,AB=8,
∴∠A=90°﹣30°=60°,AC==4,
由题意得:AC=CD,
∴△ACD为等边三角形,
∴∠ACD=60°,
∴的长为:,
故选:B.
一十.扇形面积的计算(共3小题)
21.(2022•湖北)一个扇形的弧长是10πcm,其圆心角是150°,此扇形的面积为( )
A.30πcm2 B.60πcm2 C.120πcm2 D.180πcm2
【解答】解:根据题意可得,
设扇形的半径为rcm,
则l=,
即10π=,
解得:r=12,
∴S===60π(cm2).
故选:B.
22.(2022•荆州)如图,以边长为2的等边△ABC顶点A为圆心、一定的长为半径画弧,恰好与BC边相切,分别交AB,AC于D,E,则图中阴影部分的面积是( )
A.﹣ B.2﹣π C. D.﹣
【解答】解:由题意,以A为圆心、一定的长为半径画弧,恰好与BC边相切,
设切点为F,连接AF,则AF⊥BC.
在等边△ABC中,AB=AC=BC=2,∠BAC=60°,
∴CF=BF=1.
在Rt△ACF中,AF==,
∴S阴影=S△ABC﹣S扇形ADE
=×2×﹣
=﹣,
故选:D.
23.(2020•咸宁)如图,在⊙O中,OA=2,∠C=45°,则图中阴影部分的面积为( )
A.﹣ B.π﹣ C.﹣2 D.π﹣2
【解答】解:∵∠C=45°,
∴∠AOB=90°,
∴S阴影=S扇形AOB﹣S△AOB
=﹣
=π﹣2.
故选:D.
一十一.圆锥的计算(共2小题)
24.(2021•湖北)用半径为30cm,圆心角为120°的扇形纸片恰好能围成一个圆锥的侧面,则这个圆锥底面半径为( )
A.5cm B.10cm C.15cm D.20cm
【解答】解:设圆锥的底面圆半径为rcm,依题意,得
2πr=,
解得r=10.
故选:B.
25.(2020•湖北)一个圆锥的底面半径是4cm,其侧面展开图的圆心角是120°,则圆锥的母线长是( )
A.8cm B.12cm C.16cm D.24cm
【解答】解:圆锥的底面周长为2π×4=8πcm,即为展开图扇形的弧长,
由弧长公式得=8π,
解得,R=12,即圆锥的母线长为12cm.
故选:B.
相关试卷
这是一份第29章投影与视图(选择题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北),共23页。
这是一份第24章圆-【人教版-中考真题】九年级数学上学期期末复习培优练习(广西),共49页。
这是一份第24章+圆(填空题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北),共20页。