搜索
    上传资料 赚现金
    英语朗读宝

    第27章+相似-【人教版-中考真题】九年级数学下册期末复习培优练习(内蒙古)

    第27章+相似-【人教版-中考真题】九年级数学下册期末复习培优练习(内蒙古)第1页
    第27章+相似-【人教版-中考真题】九年级数学下册期末复习培优练习(内蒙古)第2页
    第27章+相似-【人教版-中考真题】九年级数学下册期末复习培优练习(内蒙古)第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第27章+相似-【人教版-中考真题】九年级数学下册期末复习培优练习(内蒙古)

    展开

    这是一份第27章+相似-【人教版-中考真题】九年级数学下册期末复习培优练习(内蒙古),共21页。
    第27章 相似-【人教版-中考真题】九年级数学下册期末复习培优练习(内蒙古)
    一.选择题(共4小题)
    1.(2022•包头)如图,在边长为1的小正方形组成的网格中,A,B,C,D四个点均在格点上,AC与BD相交于点E,连接AB,CD,则△ABE与△CDE的周长比为(  )

    A.1:4 B.4:1 C.1:2 D.2:1
    2.(2019•赤峰)如图,D、E分别是△ABC边AB,AC上的点,∠ADE=∠ACB,若AD=2,AB=6,AC=4,则AE的长是(  )

    A.1 B.2 C.3 D.4
    3.(2018•通辽)如图,▱ABCD的对角线AC、BD交于点O,DE平分∠ADC交AB于点E,∠BCD=60°,AD=AB,连接OE.下列结论:①S▱ABCD=AD•BD;②DB平分∠CDE;③AO=DE;④S△ADE=5S△OFE,其中正确的个数有(  )

    A.1个 B.2个 C.3个 D.4个
    4.(2018•包头)如图,在四边形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E为BC的中点,AE与BD相交于点F.若BC=4,∠CBD=30°,则DF的长为(  )

    A. B. C. D.
    二.填空题(共7小题)
    5.(2022•呼和浩特)已知AB为⊙O的直径且AB=2,点C是⊙O上一点(不与A、B重合),点D在半径OB上,且AD=AC,AE与过点C的⊙O的切线垂直,垂足为E.若∠EAC=36°,则CD=   ,OD=   .
    6.(2021•包头)如图,在Rt△ABC中,∠ACB=90°,过点B作BD⊥CB,垂足为B,且BD=3,连接CD,与AB相交于点M,过点M作MN⊥CB,垂足为N.若AC=2,则MN的长为    .

    7.(2019•通辽)已知三个边长分别为2cm,3cm,5cm的正方形如图排列,则图中阴影部分的面积为   .

    8.(2019•呼和浩特)已知正方形ABCD的面积是2,E为正方形一边BC在从B到C方向的延长线上的一点,若CE=,连接AE,与正方形另外一边CD交于点F,连接BF并延长,与线段DE交于点G,则BG的长为   .
    9.(2019•包头)如图,在Rt△ABC中,∠ABC=90°,BC=3,D为斜边AC的中点,连接BD,点F是BC边上的动点(不与点B、C重合),过点B作BE⊥BD交DF延长线交于点E,连接CE,下列结论:
    ①若BF=CF,则CE2+AD2=DE2;
    ②若∠BDE=∠BAC,AB=4,则CE=;
    ③△ABD和△CBE一定相似;
    ④若∠A=30°,∠BCE=90°,则DE=.
    其中正确的是   .(填写所有正确结论的序号)

    10.(2018•巴彦淖尔)如图,⊙O为等腰三角形ABC的外接圆,AB是⊙O的直径,AB=12,P为上任意一点(不与点B,C重合),直线CP交AB的延长线于点Q,⊙O在点P处的切线PD交BQ于点D,则下列结论:①若∠PAB=30°,则的长为π;②若PD∥BC,则AP平分∠CAB;③若PB=BD,则PD=6;④无论点P在上的位置如何变化,CP•CQ=108.其中正确结论的序号为   .

    11.(2018•包头)如图,在▱ABCD中,AC是一条对角线,EF∥BC,且EF与AB相交于点E,与AC相交于点F,3AE=2EB,连接DF.若S△AEF=1,则S△ADF的值为   .

    三.解答题(共3小题)
    12.(2020•呼伦贝尔)如图,⊙O是△ABC的外接圆,直线EG与⊙O相切于点E,EG∥BC,连接AE交BC于点D.
    (1)求证:AE平分∠BAC;
    (2)若∠ABC的平分线BF交AD于点F,且DE=3,DF=2,求AF的长.

    13.(2020•通辽)如图,⊙O的直径AB交弦(不是直径)CD于点P,且PC2=PB•PA,求证:AB⊥CD.

    14.(2018•呼和浩特)如图,已知BC⊥AC,圆心O在AC上,点M与点C分别是AC与⊙O的交点,点D是MB与⊙O的交点,点P是AD延长线与BC的交点,且=.
    (1)求证:PD是⊙O的切线;
    (2)若AD=12,AM=MC,求的值.


    第27章 相似-【人教版-中考真题】九年级数学下册期末复习培优练习(内蒙古)
    参考答案与试题解析
    一.选择题(共4小题)
    1.(2022•包头)如图,在边长为1的小正方形组成的网格中,A,B,C,D四个点均在格点上,AC与BD相交于点E,连接AB,CD,则△ABE与△CDE的周长比为(  )

    A.1:4 B.4:1 C.1:2 D.2:1
    【解答】解:如图所示,

    由网格图可知:BF=2,AF=4,CH=2,DH=1,
    ∴AB==2,
    CD==.
    ∵FA∥CG,
    ∴∠FAC=∠ACG.
    在Rt△ABF中,
    tan∠BAF=,
    在Rt△CDH中,
    tan∠HCD=,
    ∴tan∠BAF=tan∠HCD,
    ∴∠BAF=∠HCD,
    ∵∠BAC=∠BAF+∠CAF,∠ACD=∠DCH+∠GCA,
    ∴∠BAC=∠DCA,
    ∴AB∥CD,
    ∴△ABE∽△CDE,
    ∴△ABE与△CDE的周长比===2:1.
    故选:D.
    2.(2019•赤峰)如图,D、E分别是△ABC边AB,AC上的点,∠ADE=∠ACB,若AD=2,AB=6,AC=4,则AE的长是(  )

    A.1 B.2 C.3 D.4
    【解答】解:∵∠ADE=∠ACB,∠A=∠A,
    ∴△ADE∽△ACB,
    ∴=,即=,
    解得,AE=3,
    故选:C.
    3.(2018•通辽)如图,▱ABCD的对角线AC、BD交于点O,DE平分∠ADC交AB于点E,∠BCD=60°,AD=AB,连接OE.下列结论:①S▱ABCD=AD•BD;②DB平分∠CDE;③AO=DE;④S△ADE=5S△OFE,其中正确的个数有(  )

    A.1个 B.2个 C.3个 D.4个
    【解答】解:∵∠BAD=∠BCD=60°,∠ADC=120°,DE平分∠ADC,
    ∴∠ADE=∠DAE=60°=∠AED,
    ∴△ADE是等边三角形,
    ∴AD=AE=AB,
    ∴E是AB的中点,
    ∴DE=BE,
    ∴∠BDE=∠AED=30°,
    ∴∠ADB=90°,即AD⊥BD,
    ∴S▱ABCD=AD•BD,故①正确;
    ∵∠CDE=60°,∠BDE=30°,
    ∴∠CDB=∠BDE,
    ∴DB平分∠CDE,故②正确;
    ∵Rt△AOD中,AO>AD,
    ∴AO>DE,故③错误;
    ∵O是BD的中点,E是AB的中点,
    ∴OE是△ABD的中位线,
    ∴OE∥AD,OE=AD,
    ∴△OEF∽△ADF,
    ∴S△ADF=4S△OEF,且AF=2OF,
    ∴S△AEF=2S△OEF,
    ∴S△ADE=6S△OFE,故④错误;
    故选:B.

    4.(2018•包头)如图,在四边形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E为BC的中点,AE与BD相交于点F.若BC=4,∠CBD=30°,则DF的长为(  )

    A. B. C. D.
    【解答】解:如图,
    在Rt△BDC中,BC=4,∠DBC=30°,
    ∴BD=2,
    连接DE,
    ∵∠BDC=90°,点E是BC中点,
    ∴DE=BE=CE=BC=2,
    ∵∠DBC=30°,
    ∴∠BDE=∠DBC=30°,
    ∵BD平分∠ABC,
    ∴∠ABD=∠DBC,
    ∴∠ABD=∠BDE,
    ∴DE∥AB,
    ∴△DEF∽△BAF,
    ∴,
    在Rt△ABD中,∠ABD=30°,BD=2,
    ∴AB=3,
    ∴,
    ∴,
    ∴DF=BD=×2=,
    故选:D.

    二.填空题(共7小题)
    5.(2022•呼和浩特)已知AB为⊙O的直径且AB=2,点C是⊙O上一点(不与A、B重合),点D在半径OB上,且AD=AC,AE与过点C的⊙O的切线垂直,垂足为E.若∠EAC=36°,则CD= 1 ,OD=  .
    【解答】解:如图:连接OC,

    设OD=x,
    ∵直径AB=2,
    ∴OA=OC=1,
    ∴AD=AC=1+x,
    ∵EC与⊙O相切于点C,
    ∴OC⊥EC,
    ∵AE⊥EC,
    ∴∠AEC=90°,
    ∴AE∥OC,
    ∴∠EAC=∠ACO=36°,
    ∵OA=OC,
    ∴∠ACO=∠OAC=36°,
    ∵AC=AD,
    ∴∠ADC=∠ACD=72°,
    ∴∠OCD=∠ACD﹣∠ACO=36°,
    ∵∠COD=2∠CAD=72°,
    ∴∠COD=∠ADC=72°,
    ∴OC=DC=1,
    ∴∠OCD=∠CAD,∠ADC=∠ODC,
    ∴△DOC∽△DCA,
    ∴=,
    ∴=,
    解得:x=,
    经检验:x=是原方程的根,
    ∵x>0,
    ∴OD=,
    故答案为:1,.

    6.(2021•包头)如图,在Rt△ABC中,∠ACB=90°,过点B作BD⊥CB,垂足为B,且BD=3,连接CD,与AB相交于点M,过点M作MN⊥CB,垂足为N.若AC=2,则MN的长为   .

    【解答】解:∵∠ACB=90°,BD⊥CB,MN⊥CB,
    ∴AC∥MN∥BD,∠CNM=∠CBD,
    ∴∠MAC=∠MBD,∠MCA=∠MDB=∠CMN,
    ∴△MAC∽△MBD,△CMN∽△CDB,
    ∴,,
    ∴,
    ∴,
    ∴MN=.
    故答案为:.
    7.(2019•通辽)已知三个边长分别为2cm,3cm,5cm的正方形如图排列,则图中阴影部分的面积为 3.75cm2 .

    【解答】解:对角线所分得的三个三角形相似,
    根据相似的性质可知=,
    解得x=2.5,
    即阴影梯形的上底就是3﹣2.5=0.5(cm).
    再根据相似的性质可知=,
    解得:y=1,
    所以梯形的下底就是3﹣1=2(cm),
    所以阴影梯形的面积是(2+0.5)×3÷2=3.75(cm2).
    故答案为:3.75cm2.

    8.(2019•呼和浩特)已知正方形ABCD的面积是2,E为正方形一边BC在从B到C方向的延长线上的一点,若CE=,连接AE,与正方形另外一边CD交于点F,连接BF并延长,与线段DE交于点G,则BG的长为  .
    【解答】解:如图:延长AD、BG相交于点H,
    ∵正方形ABCD的面积是2,
    ∴AB=BC=CD=DA=,
    又∵CE=,△EFC∽△EAB,
    ∴,
    即:F是CD的中点,
    ∵AH∥BE,
    ∴∠H=∠FBC,
    ∠BCF=∠HDF=90°
    ∴△BCF≌△HDF (AAS),
    ∴DH=BC=,
    ∵AH∥BE,
    ∴∠H=∠FBC,∠HDG=∠BEG
    ∴△HDG∽△BEG,
    ∴,
    在Rt△ABH中,BH=,
    ∴BG=,
    故答案为:

    9.(2019•包头)如图,在Rt△ABC中,∠ABC=90°,BC=3,D为斜边AC的中点,连接BD,点F是BC边上的动点(不与点B、C重合),过点B作BE⊥BD交DF延长线交于点E,连接CE,下列结论:
    ①若BF=CF,则CE2+AD2=DE2;
    ②若∠BDE=∠BAC,AB=4,则CE=;
    ③△ABD和△CBE一定相似;
    ④若∠A=30°,∠BCE=90°,则DE=.
    其中正确的是 ①②④ .(填写所有正确结论的序号)

    【解答】解:①∵∠ABC=90°,D为斜边AC的中点,
    ∴AD=BD=CD,
    ∵BF=CF,
    ∴DE⊥BC,
    ∴BE=CE,
    ∵BE⊥BD,
    ∴BD2+BE2=DE2,
    ∴CE2+AD2=DE2,
    故①正确;
    ②∵AB=4,BC=3,
    ∴AC=,
    ∴,
    ∵∠A=∠BDE,∠ABC=∠DBE=90°,
    ∴△ABC∽△DBE,
    ∴,
    即.
    ∴BE=,
    ∵AD=BD,
    ∴∠A=∠ABD,
    ∵∠A=∠BDE,∠BDC=∠A+∠ABD,
    ∴∠A=∠CDE,
    ∴DE∥AB,
    ∴DE⊥BC,
    ∵BD=CD,
    ∴DE垂直平分BC,
    ∴BE=CE,
    ∴CE=,
    故②正确;
    ③∵∠ABC=∠DBE=90°,
    ∴∠ABD=∠CBE,
    ∵,
    但随着F点运动,BE的长度会改变,而BC=3,
    ∴或不一定等于,
    ∴△ABD和△CBE不一定相似,
    故③错误;
    ④∵∠A=30°,BC=3,
    ∴∠A=∠ABD=∠CBE=30°,AC=2BC=6,
    ∴BD=,
    ∵BC=3,∠BCE=90°,
    ∴BE=,
    ∵∴,
    故④正确;
    故答案为:①②④.

    10.(2018•巴彦淖尔)如图,⊙O为等腰三角形ABC的外接圆,AB是⊙O的直径,AB=12,P为上任意一点(不与点B,C重合),直线CP交AB的延长线于点Q,⊙O在点P处的切线PD交BQ于点D,则下列结论:①若∠PAB=30°,则的长为π;②若PD∥BC,则AP平分∠CAB;③若PB=BD,则PD=6;④无论点P在上的位置如何变化,CP•CQ=108.其中正确结论的序号为 ②③ .

    【解答】解:如图,连接OP,
    ∵AO=OP,∠PAB=30°,
    ∴∠POB=60°,
    ∵AB=12,
    ∴OB=6,
    ∴的长为 =2π,故①错误;
    ∵PD是⊙O的切线,
    ∴OP⊥PD,
    ∵PD∥BC,
    ∴OP⊥BC,
    ∴=,
    ∴∠PAC=∠PAB,
    ∴AP平分∠CAB,故②正确;
    若PB=BD,则∠BPD=∠BDP,
    ∵OP⊥PD,
    ∴∠BPD+∠BPO=∠BDP+∠BOP,
    ∴∠BOP=∠BPO,
    ∴BP=BO=PO=6,即△BOP是等边三角形,
    ∴PD=OP=6,故③正确;
    ∵AC=BC,
    ∴∠BAC=∠ABC,
    又∵∠ABC=∠APC,
    ∴∠APC=∠BAC,
    又∵∠ACP=∠QCA,
    ∴△ACP∽△QCA,
    ∴=,即CP•CQ=CA2=72,故④错误;
    故答案为:②③.

    11.(2018•包头)如图,在▱ABCD中,AC是一条对角线,EF∥BC,且EF与AB相交于点E,与AC相交于点F,3AE=2EB,连接DF.若S△AEF=1,则S△ADF的值为  .

    【解答】解:∵3AE=2EB,
    ∴可设AE=2a、BE=3a,
    ∵EF∥BC,
    ∴△AEF∽△ABC,
    ∴=()2=()2=,
    ∵S△AEF=1,
    ∴S△ABC=,
    ∵四边形ABCD是平行四边形,
    ∴S△ADC=S△ABC=,
    ∵EF∥BC,
    ∴===,
    ∴==,
    ∴S△ADF=S△ADC=×=,
    故答案为:.
    三.解答题(共3小题)
    12.(2020•呼伦贝尔)如图,⊙O是△ABC的外接圆,直线EG与⊙O相切于点E,EG∥BC,连接AE交BC于点D.
    (1)求证:AE平分∠BAC;
    (2)若∠ABC的平分线BF交AD于点F,且DE=3,DF=2,求AF的长.

    【解答】解:(1)连接OE.
    ∵直线EG与⊙O相切于E,
    ∴OE⊥EG,
    ∵EG∥BC,
    ∴OE⊥BC,
    ∴,
    ∴∠BAE=∠CAE.
    ∴AE平分∠BAC;

    (2)如图,∵AE平分∠BAC,
    ∴∠1=∠4,
    ∵∠1=∠5,
    ∴∠4=∠5,
    ∵BF平分∠ABC,
    ∴∠2=∠3,
    ∵∠6=∠3+∠4=∠2+∠5,即∠6=∠EBF,
    ∴EB=EF,
    ∵DE=3,DF=2,
    ∴BE=EF=DE+DF=5,
    ∵∠5=∠4,∠BED=∠AEB,
    ∴△EBD∽△EAB,
    ∴,即,
    ∴AE=,
    ∴AF=AE﹣EF=.

    13.(2020•通辽)如图,⊙O的直径AB交弦(不是直径)CD于点P,且PC2=PB•PA,求证:AB⊥CD.

    【解答】证明:连接AC、BD,如图,
    ∵∠A=∠D,∠C=∠B,
    ∴△APC∽△DPB,
    ∴PC:PB=PA:PD,
    ∴PC•PD=PA•PB,
    ∵PC2=PB•PA,
    ∴PC=PD,
    ∵AB为直径,
    ∴AB⊥CD.

    14.(2018•呼和浩特)如图,已知BC⊥AC,圆心O在AC上,点M与点C分别是AC与⊙O的交点,点D是MB与⊙O的交点,点P是AD延长线与BC的交点,且=.
    (1)求证:PD是⊙O的切线;
    (2)若AD=12,AM=MC,求的值.

    【解答】(1)证明:连接OD、OP、CD.
    ∵=,∠A=∠A,
    ∴△ADM∽△APO,
    ∴∠ADM=∠APO,
    ∴MD∥PO,
    ∴∠1=∠4,∠2=∠3,
    ∵OD=OM,
    ∴∠3=∠4,
    ∴∠1=∠2,
    ∵OP=OP,OD=OC,
    ∴△ODP≌△OCP,
    ∴∠ODP=∠OCP,
    ∵BC⊥AC,
    ∴∠OCP=90°,
    ∴OD⊥AP,
    ∴PD是⊙O的切线.

    (2)连接CD.由(1)可知:PC=PD,
    ∵AM=MC,
    ∴AM=2MO=2R,
    在Rt△AOD中,OD2+AD2=OA2,
    ∴R2+122=9R2,
    ∴R=3,
    ∴OD=3,MC=6,
    ∵==,
    ∴DP=6,
    ∵O是MC的中点,
    ∴==,
    ∴点P是BC的中点,
    ∴BP=CP=DP=6,
    ∵MC是⊙O的直径,
    ∴∠BDC=∠CDM=90°,
    在Rt△BCM中,∵BC=2DP=12,MC=6,
    ∴BM=6,
    ∵△BCM∽△CDM,
    ∴=,即=,
    ∴MD=2,
    ∴==.


    相关试卷

    第29章+投影与视图(选择题)-【人教版-中考真题】九年级数学下册期末复习培优练习(内蒙古):

    这是一份第29章+投影与视图(选择题)-【人教版-中考真题】九年级数学下册期末复习培优练习(内蒙古),共21页。

    第27章+相似-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州):

    这是一份第27章+相似-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州),共13页。

    第26章+反比例函数-【人教版-中考真题】九年级数学下册期末复习培优练习(内蒙古):

    这是一份第26章+反比例函数-【人教版-中考真题】九年级数学下册期末复习培优练习(内蒙古),共28页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map