


2022年西藏达孜县重点中学中考数学最后冲刺浓缩精华卷含解析
展开这是一份2022年西藏达孜县重点中学中考数学最后冲刺浓缩精华卷含解析,共24页。
2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.不等式组的解集是 ( )
A.x>-1 B.x>3
C.-1<x<3 D.x<3
2.青藏高原是世界上海拔最高的高原,它的面积是 2500000 平方千米.将 2500000 用科学记数法表示应为( )
A. B. C. D.
3.sin60°的值为( )
A. B. C. D.
4.如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为( )
A.24 B.18 C.12 D.9
5.如图,在射线AB上顺次取两点C,D,使AC=CD=1,以CD为边作矩形CDEF,DE=2,将射线AB绕点A沿逆时针方向旋转,旋转角记为α(其中0°<α<45°),旋转后记作射线AB′,射线AB′分别交矩形CDEF的边CF,DE于点G,H.若CG=x,EH=y,则下列函数图象中,能反映y与x之间关系的是( )
A. B. C. D.
6.如图,在矩形ABCD中,E是AD上一点,沿CE折叠△CDE,点D恰好落在AC的中点F处,若CD=,则△ACE的面积为( )
A.1 B. C.2 D.2
7.二次函数y=x2+bx–1的图象如图,对称轴为直线x=1,若关于x的一元二次方程x2–2x–1–t=0(t为实数)在–1
A.t≥–2 B.–2≤t<7
C.–2≤t<2 D.2
A.x=0 B.x≠0 C.x=3 D.x≠3
9.如图所示,某办公大楼正前方有一根高度是15米的旗杆ED,从办公大楼顶端A测得旗杆顶端E的俯角α是45°,旗杆低端D到大楼前梯砍底边的距离DC是20米,梯坎坡长BC是12米,梯坎坡度i=1:,则大楼AB的高度约为( )(精确到0.1米,参考数据:)
A.30.6米 B.32.1 米 C.37.9米 D.39.4米
10.如图是小强用八块相同的小正方体搭建的一个积木,它的左视图是( )
A. B. C. D.
11.某种微生物半径约为0.00000637米,该数字用科学记数法可表示为( )
A.0.637×10﹣5 B.6.37×10﹣6 C.63.7×10﹣7 D.6.37×10﹣7
12.如图,矩形中,,,以为圆心,为半径画弧,交于点,以为圆心,为半径画弧,交于点,则的长为( )
A.3 B.4 C. D.5
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.用换元法解方程,设y=,那么原方程化为关于y的整式方程是_____.
14.关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不相等的实根,则实数k的取值范围是_____.
15.分解因式:4a2﹣1=_____.
16.关于的分式方程的解为负数,则的取值范围是_________.
17.二次函数的图象如图所示,给出下列说法:
①;②方程的根为,;③;④当时,随值的增大而增大;⑤当时,.其中,正确的说法有________(请写出所有正确说法的序号).
18.某班有54名学生,所在教室有6行9列座位,用(m,n)表示第m行第n列的座位,新学期准备调整座位,设某个学生原来的座位为(m,n),如果调整后的座位为(i,j),则称该生作了平移[a,b]=[m - i,n - j],并称a+b为该生的位置数.若某生的位置数为10,则当m+n取最小值时,m•n的最大值为_____________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.求证:BC是⊙O的切线;若⊙O的半径为6,BC=8,求弦BD的长.
20.(6分)如图,已知A(﹣4,),B(﹣1,m)是一次函数y=kx+b与反比例函数y=图象的两个交点,AC⊥x轴于点C,BD⊥y轴于点D.
(1)求m的值及一次函数解析式;
(2)P是线段AB上的一点,连接PC、PD,若△PCA和△PDB面积相等,求点P坐标.
21.(6分)图 1 和图 2 中,优弧纸片所在⊙O 的半径为 2,AB=2 ,点 P为优弧上一点(点 P 不与 A,B 重合),将图形沿 BP 折叠,得到点 A 的对称点 A′.
发现:
(1)点 O 到弦 AB 的距离是 ,当 BP 经过点 O 时,∠ABA′= ;
(2)当 BA′与⊙O 相切时,如图 2,求折痕的长.
拓展:把上图中的优弧纸片沿直径 MN 剪裁,得到半圆形纸片,点 P(不与点 M, N 重合)为半圆上一点,将圆形沿 NP 折叠,分别得到点 M,O 的对称点 A′, O′,设∠MNP=α.
(1)当α=15°时,过点 A′作 A′C∥MN,如图 3,判断 A′C 与半圆 O 的位置关系,并说明理由;
(2)如图 4,当α= °时,NA′与半圆 O 相切,当α= °时,点 O′落在上.
(3)当线段 NO′与半圆 O 只有一个公共点 N 时,直接写出β的取值范围.
22.(8分)如图,在平面直角坐标系中,四边形的顶点是坐标原点,点在第一象限,点在第四象限,点在轴的正半轴上,且.
(1)求点和点的坐标;
(2)点是线段上的一个动点(点不与点重合) ,以每秒个单位的速度由点向点运动,过点的直线与轴平行,直线交边或边于点,交边或边于点,设点.运动时间为,线段的长度为,已知时,直线恰好过点 .
①当时,求关于的函数关系式;
②点出发时点也从点出发,以每秒个单位的速度向点运动,点停止时点也停止.设的面积为 ,求与的函数关系式;
③直接写出②中的最大值是 .
23.(8分)如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.
(1)证明:∠BAC=∠DAC.
(2)若∠BEC=∠ABE,试证明四边形ABCD是菱形.
24.(10分)计算:2sin30°﹣(π﹣)0+|﹣1|+()﹣1
25.(10分)如图,已知二次函数的图象经过,两点.
求这个二次函数的解析式;设该二次函数的对称轴与轴交于点,连接,,求的面积.
26.(12分)如图,已知点B、E、C、F在一条直线上,AB=DF,AC=DE,∠A=∠D求证:AC∥DE;若BF=13,EC=5,求BC的长.
27.(12分)地球环境问题已经成为我们日益关注的问题.学校为了普及生态环保知识,提高学生生态环境保护意识,举办了“我参与,我环保”的知识竞赛.以下是从初一、初二两个年级随机抽取20名同学的测试成绩进行调查分析,成绩如下:
初一:76 88 93 65 78 94 89 68 95 50
89 88 89 89 77 94 87 88 92 91
初二:74 97 96 89 98 74 69 76 72 78
99 72 97 76 99 74 99 73 98 74
(1)根据上面的数据,将下列表格补充完整;
整理、描述数据:
成绩x
人数
班级
初一
1
2
3
6
初二
0
1
10
1
8
(说明:成绩90分及以上为优秀,80~90分为良好,60~80分为合格,60分以下为不合格)
分析数据:
年级
平均数
中位数
众数
初一
84
88.5
初二
84.2
74
(2)得出结论:
你认为哪个年级掌握生态环保知识水平较好并说明理由.(至少从两个不同的角度说明推断的合理性).
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
根据解不等式组的方法可以求得原不等式组的解集.
【详解】
,
解不等式①,得x>-1,
解不等式②,得x>1,
由①②可得,x>1,
故原不等式组的解集是x>1.
故选B.
【点睛】
本题考查解一元一次不等式组,解题的关键是明确解一元一次不等式组的方法.
2、C
【解析】
分析:在实际生活中,许多比较大的数,我们习惯上都用科学记数法表示,使书写、计算简便.
解答:解:根据题意:2500000=2.5×1.
故选C.
3、B
【解析】
解:sin60°=.故选B.
4、A
【解析】
【分析】易得BC长为EF长的2倍,那么菱形ABCD的周长=4BC问题得解.
【详解】∵E是AC中点,
∵EF∥BC,交AB于点F,
∴EF是△ABC的中位线,
∴BC=2EF=2×3=6,
∴菱形ABCD的周长是4×6=24,
故选A.
【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键.
5、D
【解析】
∵四边形CDEF是矩形,∴CF∥DE,∴△ACG∽△ADH,∴,
∵AC=CD=1,∴AD=2,∴,∴DH=2x,∵DE=2,∴y=2﹣2x,
∵0°<α<45°,∴0<x<1,
故选D.
【点睛】本题主要考查了旋转、相似等知识,解题的关键是根据已知得出△ACG∽△ADH.
6、B
【解析】
由折叠的性质可得CD=CF=,DE=EF,AC=,由三角形面积公式可求EF的长,即可求△ACE的面积.
【详解】
解:∵点F是AC的中点,
∴AF=CF=AC,
∵将△CDE沿CE折叠到△CFE,
∴CD=CF=,DE=EF,
∴AC=,
在Rt△ACD中,AD==1.
∵S△ADC=S△AEC+S△CDE,
∴×AD×CD=×AC×EF+×CD×DE
∴1×=EF+DE,
∴DE=EF=1,
∴S△AEC=××1=.
故选B.
【点睛】
本题考查了翻折变换,勾股定理,熟练运用三角形面积公式求得DE=EF=1是解决本题的关键.
7、B
【解析】
利用对称性方程求出b得到抛物线解析式为y=x2﹣2x﹣1,则顶点坐标为(1,﹣2),再计算当﹣1<x<4时对应的函数值的范围为﹣2≤y<7,由于关于x的一元二次方程x2﹣2x﹣1﹣t=0(t为实数)在﹣1<x<4的范围内有实数解可看作二次函数y=x2﹣2x﹣1与直线y=t有交点,然后利用函数图象可得到t的范围.
【详解】
抛物线的对称轴为直线x=﹣=1,解得b=﹣2,
∴抛物线解析式为y=x2﹣2x﹣1,则顶点坐标为(1,﹣2),
当x=﹣1时,y=x2﹣2x﹣1=2;当x=4时,y=x2﹣2x﹣1=7,
当﹣1<x<4时,﹣2≤y<7,
而关于x的一元二次方程x2﹣2x﹣1﹣t=0(t为实数)在﹣1<x<4的范围内有实数解可看作二次函数y=x2﹣2x﹣1与直线y=t有交点,
∴﹣2≤t<7,
故选B.
【点睛】
本题考查了二次函数的性质、抛物线与x轴的交点、二次函数与一元二次方程,把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程是解题的关键.
8、A
【解析】
根据分子为零,且分母不为零解答即可.
【详解】
解:∵代数式的值为零,
∴x=0,
此时分母x-3≠0,符合题意.
故选A.
【点睛】
本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子的值为0,②分母的值不为0,这两个条件缺一不可.
9、D
【解析】
解:延长AB交DC于H,作EG⊥AB于G,如图所示,则GH=DE=15米,EG=DH,∵梯坎坡度i=1:,∴BH:CH=1:,设BH=x米,则CH=x米,在Rt△BCH中,BC=12米,由勾股定理得:,解得:x=6,∴BH=6米,CH=米,∴BG=GH﹣BH=15﹣6=9(米),EG=DH=CH+CD=+20(米),∵∠α=45°,∴∠EAG=90°﹣45°=45°,∴△AEG是等腰直角三角形,∴AG=EG=+20(米),∴AB=AG+BG=+20+9≈39.4(米).故选D.
10、D
【解析】
左视图从左往右,2列正方形的个数依次为2,1,依此得出图形D正确.故选D.
【详解】
请在此输入详解!
11、B
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
0.00000637的小数点向右移动6位得到6.37
所以0.00000637用科学记数法表示为6.37×10﹣6,
故选B.
【点睛】
本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
12、B
【解析】
连接DF,在中,利用勾股定理求出CF的长度,则EF的长度可求.
【详解】
连接DF,
∵四边形ABCD是矩形
∴
在中,
故选:B.
【点睛】
本题主要考查勾股定理,掌握勾股定理的内容是解题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、6y2-5y+2=0
【解析】
根据y=,将方程变形即可.
【详解】
根据题意得:3y+,
得到6y2-5y+2=0
故答案为6y2-5y+2=0
【点睛】
此题考查了换元法解分式方程,利用了整体的思想,将方程进行适当的变形是解本题的关键.
14、k>
【解析】
由方程根的情况,根据根的判别式可得到关于k的不等式,则可求得k的取值范围.
【详解】
∵关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不相等的实根,
∴△>0,即(2k+1)2-4(k2+1)>0,
解得k>,
故答案为k>.
【点睛】
本题主要考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.
15、(2a+1)(2a﹣1)
【解析】
有两项,都能写成完全平方数的形式,并且符号相反,可用平方差公式展开.
【详解】
4a2﹣1=(2a+1)(2a﹣1).
故答案为:(2a+1)(2a-1).
【点睛】
此题考查多项式因式分解,根据多项式的特点选择适合的分解方法是解题的关键.
16、
【解析】
分式方程去分母转化为整式方程,由分式方程的解为负数,求出a的范围即可
【详解】
分式方程去分母得:2x+a=x+1
解得:x=1-a,
由分式方程解为负数,得到1-a<0,且1-a≠-1
解得:a>1且a≠2,
故答案为: a>1且a≠2
【点睛】
此题考查分式方程的解,解题关键在于求出x的值再进行分析
17、①②④
【解析】
根据抛物线的对称轴判断①,根据抛物线与x轴的交点坐标判断②,根据函数图象判断③④⑤.
【详解】
解:∵对称轴是x=-=1,
∴ab<0,①正确;
∵二次函数y=ax2+bx+c的图象与x轴的交点坐标为(-1,0)、(3,0),
∴方程x2+bx+c=0的根为x1=-1,x2=3,②正确;
∵当x=1时,y<0,
∴a+b+c<0,③错误;
由图象可知,当x>1时,y随x值的增大而增大,④正确;
当y>0时,x<-1或x>3,⑤错误,
故答案为①②④.
【点睛】
本题考查的是二次函数图象与系数之间的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.
18、36
【解析】
10=a+b=(m-i)+(n-j)=(m+n)-(i+j)
所以:m+n=10+i+j
当(m+n)取最小值时,(i+j)也必须最小,所以i和j都是2,这样才能(i+j)才能最小,因此:
m+n=10+2=12
也就是:当m+n=12时,m·n最大是多少?这就容易了:
m·n<=36
所以m·n的最大值就是36
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)详见解析;(2)BD=9.6.
【解析】
试题分析:(1)连接OB,由垂径定理可得BE=DE,OE⊥BD, ,再由圆周角定理可得 ,从而得到∠ OBE+∠ DBC=90°,即 ,命题得证.
(2)由勾股定理求出OC,再由△OBC的面积求出BE,即可得出弦BD的长.
试题解析:(1)证明:如下图所示,连接OB.
∵ E是弦BD的中点,∴ BE=DE,OE⊥ BD,,
∴∠ BOE=∠ A,∠ OBE+∠ BOE=90°.
∵∠ DBC=∠ A,∴∠ BOE=∠ DBC,
∴∠ OBE+∠ DBC=90°,∴∠ OBC=90°,即BC⊥OB,∴ BC是⊙ O的切线.
(2)解:∵ OB=6,BC=8,BC⊥OB,∴ ,
∵ ,∴ ,
∴.
点睛:本题主要考查圆中的计算问题,解题的关键在于清楚角度的转换方式和弦长的计算方法.
20、(1)m=2;y=x+;(2)P点坐标是(﹣,).
【解析】
(1)利用待定系数法求一次函数和反比例函数的解析式;
(2)设点P的坐标为根据面积公式和已知条件列式可求得的值,并根据条件取舍,得出点P的坐标.
【详解】
解:(1)∵反比例函数的图象过点
∴
∵点B(﹣1,m)也在该反比例函数的图象上,
∴﹣1•m=﹣2,
∴m=2;
设一次函数的解析式为y=kx+b,
由y=kx+b的图象过点A,B(﹣1,2),则
解得:
∴一次函数的解析式为
(2)连接PC、PD,如图,设
∵△PCA和△PDB面积相等,
∴
解得:
∴P点坐标是
【点睛】
本题考查待定系数法求反比例函数以及一次函数解析式,反比例函数与一次函数的交点问题,熟练掌握待定系数法是解题的关键.
21、发现:(1)1,60°;(2)2;拓展:(1)相切,理由详见解析;(2)45°;30°;(3)0°<α<30°或 45°≤α<90°.
【解析】
发现:(1)利用垂径定理和勾股定理即可求出点O到AB的距离;利用锐角三角函数的定义及轴对称性就可求出∠ABA′.
(2)根据切线的性质得到∠OBA′=90°,从而得到∠ABA′=120°,就可求出∠ABP,进而求出∠OBP=30°.过点O作OG⊥BP,垂足为G,容易求出OG、BG的长,根据垂径定理就可求出折痕的长.
拓展:(1)过A'、O作A'H⊥MN于点H,OD⊥A'C于点D.用含30°角的直角三角形的性质可得OD=A'H=A'N=MN=2可判定A′C与半圆相切;
(2)当NA′与半圆相切时,可知ON⊥A′N,则可知α=45°,当O′在时,连接MO′,则可知NO′=MN,可求得∠MNO′=60°,可求得α=30°;
(3)根据点A′的位置不同得到线段NO′与半圆O只有一个公共点N时α的取值范围是0°<α<30°或45°≤α<90°.
【详解】
发现:(1)过点O作OH⊥AB,垂足为H,如图1所示,
∵⊙O的半径为2,AB=2,
∴OH==
在△BOH中,OH=1,BO=2
∴∠ABO=30°
∵图形沿BP折叠,得到点A的对称点A′.
∴∠OBA′=∠ABO=30°
∴∠ABA′=60°
(2)过点O作OG⊥BP,垂足为G,如图2所示.
∵BA′与⊙O相切,∴OB⊥A′B.∴∠OBA′=90°.
∵∠OBH=30°,∴∠ABA′=120°.
∴∠A′BP=∠ABP=60°.
∴∠OBP=30°.∴OG=OB=1.∴BG=.
∵OG⊥BP,∴BG=PG=.
∴BP=2.∴折痕的长为2
拓展:(1)相切.
分别过A'、O作A'H⊥MN于点H,OD⊥A'C于点D.如图3所示,
∵A'C∥MN
∴四边形A'HOD是矩形
∴A'H=O
∵α=15°∴∠A'NH=30
∴OD=A'H=A'N=MN=2
∴A'C与半圆
(2)当NA′与半圆O相切时,则ON⊥NA′,
∴∠ONA′=2α=90°,
∴α=45
当O′在上时,连接MO′,则可知NO′=MN,
∴∠O′MN=0°
∴∠MNO′=60°,
∴α=30°,
故答案为:45°;30°.
(3)∵点P,M不重合,∴α>0,
由(2)可知当α增大到30°时,点O′在半圆上,
∴当0°<α<30°时点O′在半圆内,线段NO′与半圆只有一个公共点B;
当α增大到45°时NA′与半圆相切,即线段NO′与半圆只有一个公共点B.
当α继续增大时,点P逐渐靠近点N,但是点P,N不重合,
∴α<90°,
∴当45°≤α<90°线段BO′与半圆只有一个公共点B.
综上所述0°<α<30°或45°≤α<90°.
【点睛】
本题考查了切线的性质、垂径定理、勾股定理、三角函数的定义、30°角所对的直角边等于斜边的一半、翻折问题等知识,正确的作出辅助线是解题的关键.
22、(1);(2)①;②当时,;
当时, ;当时, ;③.
【解析】
(1)根据等腰直角三角形的性质即可解决问题;
(2)首先求出直线OA、AB、OC、BC的解析式.①求出R、Q的坐标,利用两点间距离公式即可解决问题;②分三种情形分别求解即可解决问题;③利用②中的函数,利用配方法求出最值即可;
【详解】
解:(1)由题意是等腰直角三角形,
(2) ,
线直的解析式为,直线的解析式
时,直线恰好过点.
,
直线的解析式为,直线的解析式为
①当时,,
②当时,
当时,
当时,
③当时,
,
时, 的最大值为.
当时,
.
时, 的值最大,最大值为.
当时,,
时, 的最大值为,
综上所述,最大值为
故答案为.
【点睛】
本题考查四边形综合题、一次函数的应用、二次函数的应用、等腰直角三角形的性质等知识,解题的关键是学会构建一次函数或二次函数解决实际问题,属于中考压轴题.
23、证明见解析
【解析】
试题分析:由AB=AD,CB=CD结合AC=AC可得△ABC≌△ADC,由此可得∠BAC=∠DAC,再证△ABF≌△ADF即可得到∠AFB=∠AFD,结合∠AFB=∠CFE即可得到∠AFD=∠CFE;
(2)由AB∥CD可得∠DCA=∠BAC结合∠BAC=∠DAC可得∠DCA=∠DAC,由此可得AD=CD结合AB=AD,CB=CD可得AB=BC=CD=AD,即可得到四边形ABCD是菱形.
试题解析:
(1)在△ABC和△ADC中,
∵AB=AD,CB=CD,AC=AC,
∴△ABC≌△ADC,
∴∠BAC=∠DAC,
在△ABF和△ADF中,
∵AB=AD,∠BAC=∠DAC,AF=AF,
∴△ABF≌△ADF,
∴∠AFB=∠AFD.
(2)证明:∵AB∥CD,
∴∠BAC=∠ACD,
∵∠BAC=∠DAC,
∴∠ACD=∠CAD,
∴AD=CD,
∵AB=AD,CB=CD,
∴AB=CB=CD=AD,
∴四边形ABCD是菱形.
24、1+
【解析】
分析:直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案.
详解:原式=2×-1+-1+2
=1+.
点睛:此题主要考查了实数运算,正确化简各数是解题关键.
25、见解析
【解析】
(1)二次函数图象经过A(2,0)、B(0,-6)两点,两点代入y=-x2+bx+c,算出b和c,即可得解析式;
(2)先求出对称轴方程,写出C点的坐标,计算出AC,然后由面积公式计算值.
【详解】
(1)把,代入得
,
解得.
∴这个二次函数解析式为.
(2)∵抛物线对称轴为直线,
∴的坐标为,
∴,
∴.
【点睛】
本题是二次函数的综合题,要会求二次函数的对称轴,会运用面积公式.
26、(1)证明见解析;(2)4.
【解析】
(1)首先证明△ABC≌△DFE可得∠ACE=∠DEF,进而可得AC∥DE;(2)根据△ABC≌△DFE可得BC=EF,利用等式的性质可得EB=CF,再由BF=13,EC=5进而可得EB的长,然后可得答案.
【详解】
解:(1)在△ABC和△DFE中
,
∴△ABC≌△DFE(SAS),
∴∠ACE=∠DEF,
∴AC∥DE;
(2)∵△ABC≌△DFE,
∴BC=EF,
∴CB﹣EC=EF﹣EC,
∴EB=CF,
∵BF=13,EC=5,
∴EB=4,
∴CB=4+5=1.
【点睛】
考点:全等三角形的判定与性质.
27、(1)1,2,19;(2)初一年级掌握生态环保知识水平较好.
【解析】
(1)根据初一、初二同学的测试成绩以及众数与中位数的定义即可完成表格;
(2)根据平均数、众数、中位数的统计意义回答.
【详解】
(1)补全表格如下:
整理、描述数据:
初一成绩x满足10≤x≤19的有:11 19 19 11 19 19 17 11,共1个.
故答案为:1.
分析数据:
在76 11 93 65 71 94 19 61 95 50 19 11 19 19 2 94 17 11 92 91中,19出现的次数最多,故众数为19;
把初二的抽查成绩从小到大排列为:69 72 72 73 74 74 74 74 76 76 71 19 96 97 97 91 91 99 99 99,第10个数为76,第11个数为71,故中位数为:(76+71)÷2=2.
故答案为:19,2.
(2)初一年级掌握生态环保知识水平较好.
因为两个年级的平均数相差不大,但是初一年级同学的中位数是11.5,众数是19,初二年级同学的中位数是2,众数是74,即初一年级同学的中位数与众数明显高于初二年级同学的成绩,所以初一年级掌握生态环保知识水平较好.
【点睛】
本题考查了频数(率)分布表,众数、中位数以及平均数.掌握众数、中位数以及平均数的定义是解题的关键.
相关试卷
这是一份2022届铜陵市重点中学中考数学最后冲刺浓缩精华卷含解析,共25页。试卷主要包含了考生必须保证答题卡的整洁,中国古代在利用“计里画方”,一元二次方程=0的两个根是,定义等内容,欢迎下载使用。
这是一份2022届攀枝花市重点中学中考数学最后冲刺浓缩精华卷含解析,共20页。试卷主要包含了答题时请按要求用笔,若a+|a|=0,则等于,如图所示的几何体的左视图是等内容,欢迎下载使用。
这是一份2022届嘉峪关市重点中学中考数学最后冲刺浓缩精华卷含解析,共20页。试卷主要包含了答题时请按要求用笔,式子有意义的x的取值范围是,下列实数为无理数的是等内容,欢迎下载使用。