2021-2022学年常州市重点中学中考数学最后冲刺浓缩精华卷含解析
展开
这是一份2021-2022学年常州市重点中学中考数学最后冲刺浓缩精华卷含解析,共22页。试卷主要包含了估计的值在等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)
1.不等式组 的整数解有( )
A.0个 B.5个 C.6个 D.无数个
2.关于二次函数,下列说法正确的是( )
A.图像与轴的交点坐标为 B.图像的对称轴在轴的右侧
C.当时,的值随值的增大而减小 D.的最小值为-3
3.将5570000用科学记数法表示正确的是( )
A.5.57×105 B.5.57×106 C.5.57×107 D.5.57×108
4.在平面直角坐标系中,将抛物线绕着它与轴的交点旋转180°,所得抛物线的解析式是( ).
A. B.
C. D.
5.估计的值在 ( )
A.4和5之间 B.5和6之间
C.6和7之间 D.7和8之间
6.如图,点A为∠α边上任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示cosα的值,错误的是( )
A. B. C. D.
7.如图所示,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)、(﹣2,1),将△ABC沿一确定方向平移得到△A1B1C1,点B的对应点B1的坐标是(1,2),则点A1,C1的坐标分别是 ( )
A.A1(4,4),C1(3,2) B.A1(3,3),C1(2,1)
C.A1(4,3),C1(2,3) D.A1(3,4),C1(2,2)
8.纳米是一种长度单位,1纳米=10-9米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示该种花粉的直径为( )
A.米 B.米 C.米 D.米
9.如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为( )
A.35° B.45° C.55° D.65°
10.如图,平行四边形ABCD的周长为12,∠A=60°,设边AB的长为x,四边形ABCD的面积为y,则下列图象中,能表示y与x函数关系的图象大致是( )
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,在平面直角坐标系中,函数y=(x>0)的图象经过矩形OABC的边AB、BC的中点E、F,则四边形OEBF的面积为________.
12.如图,线段 AB 的长为 4,C 为 AB 上一个动点,分别以 AC、BC 为斜边在 AB 的同侧作两个等腰直角三角形 ACD 和 BCE, 连结 DE, 则 DE 长的最小值是_____.
13.当x ________ 时,分式 有意义.
14.《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而见木?”
用今天的话说,大意是:如图,是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门位于的中点,南门位于的中点,出东门15步的处有一树木,求出南门多少步恰好看到位于处的树木(即点在直线上)?请你计算的长为__________步.
15.如图,在平面直角坐标系xOy中,点A,点B的坐标分别为(0,2),(-1,0),将线段AB沿x轴的正方向平移,若点B的对应点的坐标为B'(2,0),则点A的对应点A'的坐标为___.
16.如图,在直角坐标平面xOy中,点A坐标为,,,AB与x轴交于点C,那么AC:BC的值为______.
三、解答题(共8题,共72分)
17.(8分)如图,在矩形ABCD中,AB=3,AD=4,P沿射线BD运动,连接AP,将线段AP绕点P顺时针旋转90°得线段PQ.
(1)当点Q落到AD上时,∠PAB=____°,PA=_____,长为_____;
(2)当AP⊥BD时,记此时点P为P0,点Q为Q0,移动点P的位置,求∠QQ0D的大小;
(3)在点P运动中,当以点Q为圆心,BP为半径的圆与直线BD相切时,求BP的长度;
(4)点P在线段BD上,由B向D运动过程(包含B、D两点)中,求CQ的取值范围,直接写出结果.
18.(8分)为有效治理污染,改善生态环境,山西太原成为国内首个实现纯电动出租车的城市,绿色环保的电动出租车受到市民的广泛欢迎,给市民的生活带来了很大的方便,下表是行驶路程在15公里以内时普通燃油出租车和纯电动出租车的运营价格:
车型
起步公里数
起步价格
超出起步公里数后的单价
普通燃油型
3
13元
2.3元/公里
纯电动型
3
8元
2元/公里
张先生每天从家打出租车去单位上班(路程在15公里以内),结果发现,正常情况下乘坐纯电动出租车比乘坐燃油出租车平均每公里节省0.8元,求张先生家到单位的路程.
19.(8分)如图1,已知抛物线y=ax2+bx(a≠0)经过A(6,0)、B(8,8)两点.
(1)求抛物线的解析式;
(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D的坐标;
(3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,在坐标平面内有点P,求出所有满足△POD∽△NOB的点P坐标(点P、O、D分别与点N、O、B对应).
20.(8分)如图1,图2…、图m是边长均大于2的三角形、四边形、…、凸n边形.分别以它们的各顶点为圆心,以1为半径画弧与两邻边相交,得到3条弧、4条弧…、n条弧.
(1)图1中3条弧的弧长的和为 ,图2中4条弧的弧长的和为 ;
(2)求图m中n条弧的弧长的和(用n表示).
21.(8分)如图,某市郊外景区内一条笔直的公路a经过三个景点A、B、C,景区管委会又开发了风景优美的景点D,经测量,景点D位于景点A的北偏东30′方向8km处,位于景点B的正北方向,还位于景点C的北偏西75°方向上,已知AB=5km.景区管委会准备由景点D向公路a修建一条距离最短的公路,不考试其他因素,求出这条公路的长.(结果精确到0.1km).求景点C与景点D之间的距离.(结果精确到1km).
22.(10分)如图,在矩形纸片ABCD中,AB=6,BC=1.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.
(1)求证:△ABG≌△C′DG;
(2)求tan∠ABG的值;
(3)求EF的长.
23.(12分)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下面是水平放置的破裂管道有水部分的截面.若这个输水管道有水部分的水面宽,水面最深地方的高度为4cm,求这个圆形截面的半径.
24.在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.
(1)求证:四边形DEBF是矩形;
(2)若AF平分∠DAB,AE=3,BF=4,求▱ABCD的面积.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
先解每一个不等式,求出不等式组的解集,再求整数解即可.
【详解】
解不等式x+3>0,得x>﹣3,
解不等式﹣x≥﹣2,得x≤2,
∴不等式组的解集为﹣3<x≤2,
∴整数解有:﹣2,﹣1,0,1,2共5个,
故选B.
【点睛】
本题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.
2、D
【解析】
分析:根据题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题.
详解:∵y=2x2+4x-1=2(x+1)2-3,
∴当x=0时,y=-1,故选项A错误,
该函数的对称轴是直线x=-1,故选项B错误,
当x<-1时,y随x的增大而减小,故选项C错误,
当x=-1时,y取得最小值,此时y=-3,故选项D正确,
故选D.
点睛:本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.
3、B
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于5570000有7位,所以可以确定n=7﹣1=1.
【详解】
5570000=5.57×101所以B正确
4、B
【解析】
把抛物线y=x2+2x+3整理成顶点式形式并求出顶点坐标,再求出与y轴的交点坐标,然后求出所得抛物线的顶点,再利用顶点式形式写出解析式即可.
【详解】
解:∵y=x2+2x+3=(x+1)2+2,
∴原抛物线的顶点坐标为(-1,2),
令x=0,则y=3,
∴抛物线与y轴的交点坐标为(0,3),
∵抛物线绕与y轴的交点旋转180°,
∴所得抛物线的顶点坐标为(1,4),
∴所得抛物线的解析式为:y=-x2+2x+3[或y=-(x-1)2+4].
故选:B.
【点睛】
本题考查了二次函数图象与几何变换,利用顶点的变化确定函数解析式的变化可以使求解更简便.
5、C
【解析】
根据 ,可以估算出位于哪两个整数之间,从而可以解答本题.
【详解】
解:∵
即
故选:C.
【点睛】
本题考查估算无理数的大小,解题的关键是明确估算无理数大小的方法.
6、D
【解析】
根据锐角三角函数的定义,余弦是邻边比斜边,可得答案.
【详解】
cosα=.
故选D.
【点睛】
熟悉掌握锐角三角函数的定义是关键.
7、A
【解析】
分析:根据B点的变化,确定平移的规律,将△ABC向右移5个单位、上移1个单位,然后确定A、C平移后的坐标即可.
详解:由点B(﹣4,1)的对应点B1的坐标是(1,2)知,需将△ABC向右移5个单位、上移1个单位,
则点A(﹣1,3)的对应点A1的坐标为(4,4)、点C(﹣2,1)的对应点C1的坐标为(3,2),
故选A.
点睛:此题主要考查了平面直角坐标系中的平移,关键是根据已知点的平移变化总结出平移的规律.
8、C
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
35000纳米=35000×10-9米=3.5×10-5米.
故选C.
【点睛】
此题主要考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
9、C
【解析】
分析:由同弧所对的圆周角相等可知∠B=∠ADC=35°;而由圆周角的推论不难得知∠ACB=90°,则由∠CAB=90°-∠B即可求得.
详解:∵∠ADC=35°,∠ADC与∠B所对的弧相同,
∴∠B=∠ADC=35°,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠CAB=90°-∠B=55°,
故选C.
点睛:本题考查了同弧所对的圆周角相等以及直径所对的圆周角是直角等知识.
10、C
【解析】
过点B作BE⊥AD于E,构建直角△ABE,通过解该直角三角形求得BE的长度,然后利用平行四边形的面积公式列出函数关系式,结合函数关系式找到对应的图像.
【详解】
如图,过点B作BE⊥AD于E.∵∠A=60°,设AB边的长为x,∴BE=AB∙sin60°=x.∵平行四边形ABCD的周长为12,∴AB=(12-2x)=6-x,∴y=AD∙BE=(6-x)×x=﹣(0≤x≤6).则该函数图像是一开口向下的抛物线的一部分,观察选项,C符合题意.故选C.
【点睛】
本题考查了二次函数的图像,根据题意求出正确的函数关系式是解题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、2
【解析】
设矩形OABC中点B的坐标为,
∵点E、F是AB、BC的中点,
∴点E、F的坐标分别为:、,
∵点E、F都在反比例函数的图象上,
∴S△OCF==,S△OAE=,
∴S矩形OABC=,
∴S四边形OEBF= S矩形OABC- S△OAE-S△OCF=.
即四边形OEBF的面积为2.
点睛:反比例函数中“”的几何意义为:若点P是反比例函数图象上的一点,连接坐标原点O和点P,过点P向坐标轴作垂线段,垂足为点D,则S△OPD=.
12、2
【解析】
试题分析:由题意得,;C为AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE,AD=CD;CE=BE;由勾股定理得,解得;而AC+BC=AB=4,,∵=16;,∴,,得出
考点:不等式的性质
点评:本题考查不等式的性质,会用勾股定理,完全平方公式,不等关系等知识,它们是解决本题的关键
13、x≠3
【解析】
由题意得
x-3≠0,
∴x≠3.
14、
【解析】
分析:由正方形的性质得到∠EDG=90°,从而∠KDC+∠HDA=90°,再由∠C+∠KDC=90°,得到∠C=∠HDA,即有△CKD∽△DHA,由相似三角形的性质得到CK:KD=HD:HA,求解即可得到结论.
详解:∵DEFG是正方形,∴∠EDG=90°,∴∠KDC+∠HDA=90°.
∵∠C+∠KDC=90°,∴∠C=∠HDA.
∵∠CKD=∠DHA=90°,∴△CKD∽△DHA,
∴CK:KD=HD:HA,∴CK:100=100:15,
解得:CK=.
故答案为:.
点睛:本题考查了相似三角形的应用.解题的关键是证明△CKD∽△DHA.
15、(3,2)
【解析】
根据平移的性质即可得到结论.
【详解】
∵将线段AB沿x轴的正方向平移,若点B的对应点B′的坐标为(2,0),
∵-1+3=2,
∴0+3=3
∴A′(3,2),
故答案为:(3,2)
【点睛】
本题考查了坐标与图形变化-平移.解决本题的关键是正确理解题目,按题目的叙述一定要把各点的大致位置确定,正确地作出图形.
16、
【解析】
过点A作AD⊥y轴,垂足为D,作BE⊥y轴,垂足为E.先证△ADO∽△OEB,再根据∠OAB=30°求出三角形的相似比,得到OD:OE=2∶,根据平行线分线段成比例得到AC:BC=OD:OE=2∶=
【详解】
解:
如图所示:过点A作AD⊥y轴,垂足为D,作BE⊥y轴,垂足为E.
∵∠OAB=30°,∠ADE=90°,∠DEB=90°
∴∠DOA+∠BOE=90°,∠OBE+∠BOE=90°
∴∠DOA=∠OBE
∴△ADO∽△OEB
∵∠OAB=30°,∠AOB=90°,
∴OA∶OB=
∵点A坐标为(3,2)
∴AD=3,OD=2
∵△ADO∽△OEB
∴
∴OE
∵OC∥AD∥BE
根据平行线分线段成比例得:
AC:BC=OD:OE=2∶=
故答案为.
【点睛】
本题考查三角形相似的证明以及平行线分线段成比例.
三、解答题(共8题,共72分)
17、 (1)45,,π;(2)满足条件的∠QQ0D为45°或135°;(3)BP的长为或;(4)≤CQ≤7.
【解析】
(1)由已知,可知△APQ为等腰直角三角形,可得∠PAB,再利用三角形相似可得PA,及弧AQ的长度;
(2)分点Q在BD上方和下方的情况讨论求解即可.
(3)分别讨论点Q在BD上方和下方的情况,利用切线性质,在由(2)用BP0表示BP,由射影定理计算即可;
(4)由(2)可知,点Q在过点Qo,且与BD夹角为45°的线段EF上运动,有图形可知,当点Q运动到点E时,CQ最长为7,再由垂线段最短,应用面积法求CQ最小值.
【详解】
解:(1)如图,过点P做PE⊥AD于点E
由已知,AP=PQ,∠APQ=90°
∴△APQ为等腰直角三角形
∴∠PAQ=∠PAB=45°
设PE=x,则AE=x,DE=4﹣x
∵PE∥AB
∴△DEP∽△DAB
∴=
∴=
解得x=
∴PA=PE=
∴弧AQ的长为•2π•=π.
故答案为45,,π.
(2)如图,过点Q做QF⊥BD于点F
由∠APQ=90°,
∴∠APP0+∠QPD=90°
∵∠P0AP+∠APP0=90°
∴∠QPD=∠P0AP
∵AP=PQ
∴△APP0≌△PQF
∴AP0=PF,P0P=QF
∵AP0=P0Q0
∴Q0D=P0P
∴QF=FQ0
∴∠QQ0D=45°.
当点Q在BD的右下方时,同理可得∠PQ0Q=45°,
此时∠QQ0D=135°,
综上所述,满足条件的∠QQ0D为45°或135°.
(3)如图当点Q直线BD上方,当以点Q为圆心,BP为半径的圆与直线BD相切时
过点Q做QF⊥BD于点F,则QF=BP
由(2)可知,PP0=BP
∴BP0=BP
∵AB=3,AD=4
∴BD=5
∵△ABP0∽△DBA
∴AB2=BP0•BD
∴9=BP×5
∴BP=
同理,当点Q位于BD下方时,可求得BP=
故BP的长为或
(4)由(2)可知∠QQ0D=45°
则如图,点Q在过点Q0,且与BD夹角为45°的线段EF上运动,
当点P与点B重合时,点Q与点F重合,此时,CF=4﹣3=1
当点P与点D重合时,点Q与点E重合,此时,CE=4+3=7
∴EF===5
过点C做CH⊥EF于点H
由面积法可知
CH===
∴CQ的取值范围为:≤CQ≤7
【点睛】
本题是几何综合题,考查了三角形全等、勾股定理、切线性质以及三角形相似的相关知识,应用了分类讨论和数形结合的数学思想.
18、8.2 km
【解析】
首先设小明家到单位的路程是x千米,根据题意列出方程进行求解.
【详解】
解:设小明家到单位的路程是x千米.
依题意,得13+2.3(x-3)=8+2(x-3)+0.8x.
解得:x=8.2
答:小明家到单位的路程是8.2千米.
【点睛】
本题考查一元一次方程的应用,找准等量关系是解题关键.
19、(1)抛物线的解析式是y=x2﹣3x;(2)D点的坐标为(4,﹣4);(3)点P的坐标是()或().
【解析】
试题分析:(1)利用待定系数法求二次函数解析式进而得出答案即可;
(2)首先求出直线OB的解析式为y=x,进而将二次函数以一次函数联立求出交点即可;
(3)首先求出直线A′B的解析式,进而由△P1OD∽△NOB,得出△P1OD∽△N1OB1,进而求出点P1的坐标,再利用翻折变换的性质得出另一点的坐标.
试题解析:
(1)∵抛物线y=ax2+bx(a≠0)经过A(6,0)、B(8,8)
∴将A与B两点坐标代入得:,解得:,
∴抛物线的解析式是y=x2﹣3x.
(2)设直线OB的解析式为y=k1x,由点B(8,8),
得:8=8k1,解得:k1=1
∴直线OB的解析式为y=x,
∴直线OB向下平移m个单位长度后的解析式为:y=x﹣m,
∴x﹣m=x2﹣3x,
∵抛物线与直线只有一个公共点,
∴△=16﹣2m=0,
解得:m=8,
此时x1=x2=4,y=x2﹣3x=﹣4,
∴D点的坐标为(4,﹣4)
(3)∵直线OB的解析式为y=x,且A(6,0),
∴点A关于直线OB的对称点A′的坐标是(0,6),
根据轴对称性质和三线合一性质得出∠A′BO=∠ABO,
设直线A′B的解析式为y=k2x+6,过点(8,8),
∴8k2+6=8,解得:k2= ,
∴直线A′B的解析式是y=,
∵∠NBO=∠ABO,∠A′BO=∠ABO,
∴BA′和BN重合,即点N在直线A′B上,
∴设点N(n,),又点N在抛物线y=x2﹣3x上,
∴=n2﹣3n, 解得:n1=﹣,n2=8(不合题意,舍去)
∴N点的坐标为(﹣,).
如图1,将△NOB沿x轴翻折,得到△N1OB1,
则N1(﹣,-),B1(8,﹣8),
∴O、D、B1都在直线y=﹣x上.
∵△P1OD∽△NOB,△NOB≌△N1OB1,
∴△P1OD∽△N1OB1,
∴,
∴点P1的坐标为().
将△OP1D沿直线y=﹣x翻折,可得另一个满足条件的点P2(),
综上所述,点P的坐标是()或().
【点睛】运用了翻折变换的性质以及待定系数法求一次函数和二次函数解析式以及相似三角形的判定与性质等知识,利用翻折变换的性质得出对应点关系是解题关键.
20、 (1)π, 2π;(2)(n﹣2)π.
【解析】
(1)利用弧长公式和三角形和四边形的内角和公式代入计算;
(2)利用多边形的内角和公式和弧长公式计算.
【详解】
(1)利用弧长公式可得
=π,
因为n1+n2+n3=180°.
同理,四边形的==2π,
因为四边形的内角和为360度;
(2)n条弧==(n﹣2)π.
【点睛】
本题考查了多边形的内角和定理以及扇形的面积公式和弧长的计算公式,理解公式是关键.
21、(1)景点D向公路a修建的这条公路的长约是3.1km;(2)景点C与景点D之间的距离约为4km.
【解析】
解:(1)如图,过点D作DE⊥AC于点E,
过点A作AF⊥DB,交DB的延长线于点F,在Rt△DAF中,∠ADF=30°,
∴AF=AD=×8=4,∴DF=,
在Rt△ABF中BF==3,
∴BD=DF﹣BF=4﹣3,sin∠ABF=,
在Rt△DBE中,sin∠DBE=,∵∠ABF=∠DBE,∴sin∠DBE=,
∴DE=BD•sin∠DBE=×(4﹣3)=≈3.1(km),
∴景点D向公路a修建的这条公路的长约是3.1km;
(2)由题意可知∠CDB=75°,
由(1)可知sin∠DBE==0.8,所以∠DBE=53°,
∴∠DCB=180°﹣75°﹣53°=52°,
在Rt△DCE中,sin∠DCE=,∴DC=≈4(km),
∴景点C与景点D之间的距离约为4km.
22、(1)证明见解析(2)7/24(3)25/6
【解析】(1)证明:∵△BDC′由△BDC翻折而成,
∴∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,∴∠ABG=∠ADE。
在△ABG≌△C′DG中,∵∠BAG=∠C,AB= C′D,∠ABG=∠AD C′,
∴△ABG≌△C′DG(ASA)。
(2)解:∵由(1)可知△ABG≌△C′DG,∴GD=GB,∴AG+GB=AD。
设AG=x,则GB=1﹣x,
在Rt△ABG中,∵AB2+AG2=BG2,即62+x2=(1﹣x)2,解得x=。
∴。
(3)解:∵△AEF是△DEF翻折而成,∴EF垂直平分AD。∴HD=AD=4。
∵tan∠ABG=tan∠ADE=。∴EH=HD×=4×。
∵EF垂直平分AD,AB⊥AD,∴HF是△ABD的中位线。∴HF=AB=×6=3。
∴EF=EH+HF=。
(1)根据翻折变换的性质可知∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,故可得出结论。
(2)由(1)可知GD=GB,故AG+GB=AD,设AG=x,则GB=1-x,在Rt△ABG中利用勾股定理即可求出AG的长,从而得出tan∠ABG的值。
(3)由△AEF是△DEF翻折而成可知EF垂直平分AD,故HD=AD=4,再根据tan∠ABG的值即可得出EH的长,同理可得HF是△ABD的中位线,故可得出HF的长,由EF=EH+HF即可得出结果。
23、这个圆形截面的半径为10cm.
【解析】
分析:先作辅助线,利用垂径定理求出半径,再根据勾股定理计算.
解答:解:如图,OE⊥AB交AB于点D,
则DE=4,AB=16,AD=8,
设半径为R,
∴OD=OE-DE=R-4,
由勾股定理得,OA2=AD2+OD2,
即R2=82+(R-4)2,
解得,R=10cm.
24、(1)证明见解析(2)3
【解析】
试题分析:(1)根据平行四边形的性质,可证DF∥EB,然后根据一组对边平行且相等的四边形为平行四边形可证四边形DEBF是平行四边形,然后根据有一个角是直角的平行四边形是矩形可证;
(2)根据(1)可知DE=BF,然后根据勾股定理可求AD的长,然后根据角平分线的性质和平行线的性质可求得DF=AD,然后可求CD的长,最后可用平行四边形的面积公式可求解.
试题解析:(1)∵四边形ABCD是平行四边形,
∴DC∥AB,即DF∥EB.
又∵DF=BE,
∴四边形DEBF是平行四边形.
∵DE⊥AB,
∴∠EDB=90°.
∴四边形DEBF是矩形.
(2)∵四边形DEBF是矩形,
∴DE=BF=4,BD=DF.
∵DE⊥AB,
∴AD===1.
∵DC∥AB,
∴∠DFA=∠FAB.
∵AF平分∠DAB,
∴∠DAF=∠FAB.
∴∠DAF=∠DFA.
∴DF=AD=1.
∴BE=1.
∴AB=AE+BE=3+1=2.
∴S□ABCD=AB·BF=2×4=3.
相关试卷
这是一份乐山市重点中学2021-2022学年中考数学最后冲刺浓缩精华卷含解析,共26页。试卷主要包含了已知A样本的数据如下等内容,欢迎下载使用。
这是一份江苏省常州市重点达标名校2021-2022学年中考数学最后冲刺浓缩精华卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,下列计算错误的是,不等式组的解集为等内容,欢迎下载使用。
这是一份2022届嘉峪关市重点中学中考数学最后冲刺浓缩精华卷含解析,共20页。试卷主要包含了答题时请按要求用笔,式子有意义的x的取值范围是,下列实数为无理数的是等内容,欢迎下载使用。