|试卷下载
搜索
    上传资料 赚现金
    2022年浙江省宁波城区五校联考中考数学模拟预测题含解析
    立即下载
    加入资料篮
    2022年浙江省宁波城区五校联考中考数学模拟预测题含解析01
    2022年浙江省宁波城区五校联考中考数学模拟预测题含解析02
    2022年浙江省宁波城区五校联考中考数学模拟预测题含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年浙江省宁波城区五校联考中考数学模拟预测题含解析

    展开
    这是一份2022年浙江省宁波城区五校联考中考数学模拟预测题含解析,共20页。试卷主要包含了已知下列命题等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.式子在实数范围内有意义,则x的取值范围是(  )
    A.x>﹣2 B.x≥﹣2 C.x<﹣2 D.x≤﹣2
    2.计算3a2-a2的结果是(  )
    A.4a2 B.3a2 C.2a2 D.3
    3.已知关于x的不等式组 至少有两个整数解,且存在以3,a,7为边的三角形,则a的整数解有(  )
    A.4个 B.5个 C.6个 D.7个
    4.若  ,则括号内的数是  
    A. B. C.2 D.8
    5.共享单车已经成为城市公共交通的重要组成部分,某共享单车公司经过调查获得关于共享单车租用行驶时间的数据,并由此制定了新的收费标准:每次租用单车行驶a小时及以内,免费骑行;超过a小时后,每半小时收费1元,这样可保证不少于50%的骑行是免费的.制定这一标准中的a的值时,参考的统计量是此次调查所得数据的(  )

    A.平均数 B.中位数 C.众数 D.方差
    6.一辆慢车和一辆快车沿相同的路线从A地到B地,所行驶的路程与时间的函数图形如图所示,下列说法正确的有( )

    ①快车追上慢车需6小时;②慢车比快车早出发2小时;③快车速度为46km/h;④慢车速度为46km/h; ⑤A、B两地相距828km;⑥快车从A地出发到B地用了14小时
    A.2个 B.3个 C.4个 D.5个
    7.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是( )
    A. B. C. D.
    8.如图,O为坐标原点,四边彤OACB是菱形,OB在x轴的正半轴上,sin∠AOB=,反比例函数在第一象限内的图象经过点A,与BC交于点F,删△AOF的面积等于( )

    A.10 B.9 C.8 D.6
    9.如图,四边形ABCD是菱形,对角线AC,BD交于点O,,,于点H,且DH与AC交于G,则OG长度为  

    A. B. C. D.
    10.已知下列命题:①对顶角相等;②若a>b>0,则<;③对角线相等且互相垂直的四边形是正方形;④抛物线y=x2﹣2x与坐标轴有3个不同交点;⑤边长相等的多边形内角都相等.从中任选一个命题是真命题的概率为(  )
    A. B. C. D.
    11.随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率为( )
    A. B. C. D.
    12.李老师在编写下面这个题目的答案时,不小心打乱了解答过程的顺序,你能帮他调整过来吗?证明步骤正确的顺序是  
    已知:如图,在中,点D,E,F分别在边AB,AC,BC上,且,,
    求证:∽.
    证明:又,,,,∽.

    A. B. C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.不等式组的最大整数解是__________.
    14.如图,10块相同的长方形墙砖拼成一个长方形,设长方形墙砖的长为x厘米,则依题意列方程为_________.

    15.两地相距的路程为240千米,甲、乙两车沿同一线路从地出发到地,分别以一定的速度匀速行驶,甲车先出发40分钟后,乙车才出发.途中乙车发生故障,修车耗时20分钟,随后,乙车车速比发生故障前减少了10千米/小时(仍保持匀速前行),甲、乙两车同时到达地.甲、乙两车相距的路程(千米)与甲车行驶时间(小时)之间的关系如图所示,求乙车修好时,甲车距地还有____________千米.

    16.2011年,我国汽车销量超过了18500000辆,这个数据用科学记数法表示为
      ▲  辆.
    17.一个不透明口袋里装有形状、大小都相同的2个红球和4个黑球,从中任意摸出一个球恰好是红球的概率是____.
    18.如果分式的值是0,那么x的值是______.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)货车行驶25与轿车行驶35所用时间相同.已知轿车每小时比货车多行驶20,求货车行驶的速度.
    20.(6分)列方程解应用题:某地2016年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2018年在2016年的基础上增加投入资金1600万元.从2016年到2018年,该地投入异地安置资金的年平均增长率为多少?
    21.(6分)在正方形 ABCD 中,M 是 BC 边上一点,且点 M 不与 B、C 重合,点 P 在射线 AM 上,将线段 AP 绕点 A 顺时针旋转 90°得到线段 AQ,连接BP,DQ.

    (1)依题意补全图 1;
    (2)①连接 DP,若点 P,Q,D 恰好在同一条直线上,求证:DP2+DQ2=2AB2;
    ②若点 P,Q,C 恰好在同一条直线上,则 BP 与 AB 的数量关系为: .
    22.(8分)计算:4cos30°﹣+20180+|1﹣|
    23.(8分)先化简,再求值:,其中m=2.
    24.(10分)已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.
    (I)如图①,若BC为⊙O的直径,求BD、CD的长;
    (II)如图②,若∠CAB=60°,求BD、BC的长.

    25.(10分)由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:
    若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)
    26.(12分)已知:如图,梯形ABCD,DC∥AB,对角线AC平分∠BCD,点E在边CB的延长线上,EA⊥AC,垂足为点A.
    (1)求证:B是EC的中点;
    (2)分别延长CD、EA相交于点F,若AC2=DC•EC,求证:AD:AF=AC:FC.

    27.(12分)如图,⊙O是△ABC的外接圆,AB为直径,OD∥BC交⊙O于点D,交AC于点E,连接AD、BD、CD.
    (1)求证:AD=CD;
    (2)若AB=10,OE=3,求tan∠DBC的值.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    根据二次根式有意义的条件可得 ,再解不等式即可.
    【详解】
    解:由题意得:,
    解得:,
    故选:B.
    【点睛】
    此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.
    2、C
    【解析】
    【分析】根据合并同类项法则进行计算即可得.
    【详解】3a2-a2
    =(3-1)a2
    =2a2,
    故选C.
    【点睛】本题考查了合并同类项,熟记合并同类项的法则是解题的关键.合并同类项就是把同类项的系数相加减,字母和字母的指数不变.
    3、A
    【解析】
    依据不等式组至少有两个整数解,即可得到a>5,再根据存在以3,a,7为边的三角形,可得4<a<10,进而得出a的取值范围是5<a<10,即可得到a的整数解有4个.
    【详解】
    解:解不等式①,可得x<a,
    解不等式②,可得x≥4,
    ∵不等式组至少有两个整数解,
    ∴a>5,
    又∵存在以3,a,7为边的三角形,
    ∴4<a<10,
    ∴a的取值范围是5<a<10,
    ∴a的整数解有4个,
    故选:A.
    【点睛】
    此题考查的是一元一次不等式组的解法和三角形的三边关系的运用,求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
    4、C
    【解析】
    根据有理数的减法,减去一个数等于加上这个数的相反数,可得答案.
    【详解】
    解:,
    故选:C.
    【点睛】
    本题考查了有理数的减法,减去一个数等于加上这个数的相反数.
    5、B
    【解析】
    根据需要保证不少于50%的骑行是免费的,可得此次调查的参考统计量是此次调查所得数据的中位数.
    【详解】
    因为需要保证不少于50%的骑行是免费的,
    所以制定这一标准中的a的值时,参考的统计量是此次调查所得数据的中位数,
    故选B.
    【点睛】
    本题考查了中位数的知识,中位数是以它在所有标志值中所处的位置确定的全体单位标志值的代表值,不受分布数列的极大或极小值影响,从而在一定程度上提高了中位数对分布数列的代表性。
    6、B
    【解析】
    根据图形给出的信息求出两车的出发时间,速度等即可解答.
    【详解】
    解:①两车在276km处相遇,此时快车行驶了4个小时,故错误.
    ②慢车0时出发,快车2时出发,故正确.
    ③快车4个小时走了276km,可求出速度为69km/h,错误.
    ④慢车6个小时走了276km,可求出速度为46km/h,正确.
    ⑤慢车走了18个小时,速度为46km/h,可得A,B距离为828km,正确.
    ⑥快车2时出发,14时到达,用了12小时,错误.
    故答案选B.
    【点睛】
    本题考查了看图手机信息的能力,注意快车并非0时刻出发是解题关键.
    7、A
    【解析】
    根据“用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺”可以列出相应的方程组,本题得以解决.
    【详解】
    由题意可得,

    故选A.
    【点睛】
    本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.
    8、A
    【解析】
    过点A作AM⊥x轴于点M,过点F作FN⊥x轴于点N,设OA=a,BF=b,通过解直角三角形分别找出点A、F的坐标,结合反比例函数图象上点的坐标特征即可求出a、b的值,通过分割图形求面积,最终找出△AOF的面积等于梯形AMNF的面积,利用梯形的面积公式即可得出结论.
    解:过点A作AM⊥x轴于点M,过点F作FN⊥x轴于点N,如图所示.

    设OA=a,BF=b,
    在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,
    ∴AM=OA•sin∠AOB=a,OM==a,
    ∴点A的坐标为(a, a).
    ∵点A在反比例函数y=的图象上,
    ∴a×a=a2=12,
    解得:a=5,或a=﹣5(舍去).
    ∴AM=8,OM=1.
    ∵四边形OACB是菱形,
    ∴OA=OB=10,BC∥OA,
    ∴∠FBN=∠AOB.
    在Rt△BNF中,BF=b,sin∠FBN=,∠BNF=90°,
    ∴FN=BF•sin∠FBN=b,BN==b,
    ∴点F的坐标为(10+b,b).
    ∵点F在反比例函数y=的图象上,
    ∴(10+b)×b=12,
    S△AOF=S△AOM+S梯形AMNF﹣S△OFN=S梯形AMNF=10
    故选A.
    “点睛”本题主要考查了菱形的性质、解直角三角形以及反比例函数图象上点的坐标特征,解题的关键是找出S△AOF=S菱形OBCA.
    9、B
    【解析】
    试题解析:在菱形中,,,所以,,在中,,
    因为,所以,则,在中,由勾股定理得,,由可得,,即,所以.故选B.

    10、B
    【解析】
    ∵①对顶角相等,故此选项正确;
    ②若a>b>0,则<,故此选项正确;
    ③对角线相等且互相垂直平分的四边形是正方形,故此选项错误;
    ④抛物线y=x2﹣2x与坐标轴有2个不同交点,故此选项错误;
    ⑤边长相等的多边形内角不一定都相等,故此选项错误;
    ∴从中任选一个命题是真命题的概率为:.
    故选:B.
    11、D
    【解析】
    先求出两次掷一枚硬币落地后朝上的面的所有情况,再根据概率公式求解.
    【详解】
    随机掷一枚均匀的硬币两次,落地后情况如下:

    至少有一次正面朝上的概率是,
    故选:D.
    【点睛】
    本题考查了随机事件的概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.
    12、B
    【解析】
    根据平行线的性质可得到两组对应角相等,易得解题步骤;
    【详解】
    证明:,

    又,

    ∽.
    故选B.
    【点睛】
    本题考查了相似三角形的判定与性质;关键是证明三角形相似.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.
    【详解】
    解:,
    由不等式①得x≤1,
    由不等式②得x>-1,
    其解集是-1<x≤1,
    所以整数解为0,1,1,
    则该不等式组的最大整数解是x=1.
    故答案为:1.
    【点睛】
    考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
    14、x+x=75.
    【解析】
    试题解析:设长方形墙砖的长为x厘米,
    可得:x+x=75.
    15、90
    【解析】
    【分析】观察图象可知甲车40分钟行驶了30千米,由此可求出甲车速度,再根据甲车行驶小时时与乙车的距离为10千米可求得乙车的速度,从而可求得乙车出故障修好后的速度,再根据甲、乙两车同时到达B地,设乙车出故障前走了t1小时,修好后走了t2小时,根据等量关系甲车用了小时行驶了全程,乙车行驶的路程为60t1+50t2=240,列方程组求出t2,再根据甲车的速度即可知乙车修好时甲车距B地的路程.
    【详解】甲车先行40分钟(),所行路程为30千米,
    因此甲车的速度为(千米/时),
    设乙车的初始速度为V乙,则有

    解得:(千米/时),
    因此乙车故障后速度为:60-10=50(千米/时),
    设乙车出故障前走了t1小时,修好后走了t2小时,则有
    ,解得:,
    45×2=90(千米),
    故答案为90.
    【点评】 本题考查了一次函数的实际应用,难度较大,求出速度后能从题中找到必要的等量关系列方程组进行求解是关键.
    16、2.85×2.
    【解析】
    根据科学记数法的定义,科学记数法的表示形式为a×20n,其中2≤|a|<20,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于2还是小于2.当该数大于或等于2时,n为它的整数位数减2;当该数小于2时,-n为它第一个有效数字前0的个数(含小数点前的2个0).
    【详解】
    解:28500000一共8位,从而28500000=2.85×2.
    17、.
    【解析】
    根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.
    【详解】
    ∵一个不透明口袋里装有形状、大小都相同的2个红球和4个黑球,
    ∴从中任意摸出一个球恰好是红球的概率为: ,
    故答案为.
    【点睛】
    本题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.
    18、1.
    【解析】
    根据分式为1的条件得到方程,解方程得到答案.
    【详解】
    由题意得,x=1,故答案是:1.
    【点睛】
    本题考查分式的值为零的条件,分式为1需同时具备两个条件:(1)分子为1;(2)分母不为1.这两个条件缺一不可.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、50千米/小时.
    【解析】
    根据题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出方程求解即可.
    【详解】
    解:设货车的速度为x千米/小时,依题意得:
    解:根据题意,得

    解得:x=50
    经检验x=50是原方程的解.
    答:货车的速度为50千米/小时.
    【点睛】
    本题考查了分式方程的应用,找出题中的等量关系,列出关系式是解题的关键.
    20、从2015年到2017年,该地投入异地安置资金的年平均增长率为50%.
    【解析】
    设年平均增长率为x,根据:2016年投入资金×(1+增长率)2=2018年投入资金,列出方程求解可得.
    【详解】
    解:设该地投入异地安置资金的年平均增长率为x.
    根据题意得:1280(1+x)2=1280+1600.
    解得x1=0.5=50%,x2=-2.5(舍去),
    答:从2016年到2018年,该地投入异地安置资金的年平均增长率为50%.
    【点睛】
    本题考查了一元二次方程的应用,由题意准确找出相等关系并据此列出方程是解题的关键.
    21、(1)详见解析;(1)①详见解析;②BP=AB.
    【解析】
    (1)根据要求画出图形即可;
    (1)①连接BD,如图1,只要证明△ADQ≌△ABP,∠DPB=90°即可解决问题;
    ②结论:BP=AB,如图3中,连接AC,延长CD到N,使得DN=CD,连接AN,QN.由△ADQ≌△ABP,△ANQ≌△ACP,推出DQ=PB,∠AQN=∠APC=45°,由∠AQP=45°,推出∠NQC=90°,由CD=DN,可得DQ=CD=DN=AB;
    【详解】
    (1)解:补全图形如图 1:

    (1)①证明:连接 BD,如图 1,

    ∵线段 AP 绕点 A 顺时针旋转 90°得到线段 AQ,
    ∴AQ=AP,∠QAP=90°,
    ∵四边形 ABCD 是正方形,
    ∴AD=AB,∠DAB=90°,
    ∴∠1=∠1.
    ∴△ADQ≌△ABP,
    ∴DQ=BP,∠Q=∠3,
    ∵在 Rt△QAP 中,∠Q+∠QPA=90°,
    ∴∠BPD=∠3+∠QPA=90°,
    ∵在 Rt△BPD 中,DP1+BP1=BD1, 又∵DQ=BP,BD1=1AB1,
    ∴DP1+DQ1=1AB1.
    ②解:结论:BP=AB.
    理由:如图 3 中,连接 AC,延长 CD 到 N,使得 DN=CD,连接 AN,QN.

    ∵△ADQ≌△ABP,△ANQ≌△ACP,
    ∴DQ=PB,∠AQN=∠APC=45°,
    ∵∠AQP=45°,
    ∴∠NQC=90°,
    ∵CD=DN,
    ∴DQ=CD=DN=AB,
    ∴PB=AB.
    【点睛】
    本题考查正方形的性质,旋转变换、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴
    22、
    【解析】
    先代入三角函数值、化简二次根式、计算零指数幂、取绝对值符号,再计算乘法,最后计算加减可得.
    【详解】
    原式=
    =
    =
    【点睛】
    本题主要考查实数的混合运算,解题的关键是熟练掌握实数的混合运算顺序和运算法则及零指数幂、绝对值和二次根式的性质.
    23、,原式.
    【解析】
    原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把m的值代入计算即可求出值.
    【详解】
    原式,
    当m=2时,原式.
    【点睛】
    此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
    24、(1)BD=CD=5;(2)BD=5,BC=5.
    【解析】
    (1)利用圆周角定理可以判定△DCB是等腰直角三角形,利用勾股定理即可解决问题;
    (2)如图②,连接OB,OD.由圆周角定理、角平分线的性质以及等边三角形的判定推知△OBD是等边三角形,则BD=OB=OD=5,再根据垂径定理求出BE即可解决问题.
    【详解】
    (1)∵BC是⊙O的直径,
    ∴∠CAB=∠BDC=90°.
    ∵AD平分∠CAB,
    ∴,
    ∴CD=BD.
    在直角△BDC中,BC=10,CD2+BD2=BC2,
    ∴BD=CD=5,
    (2)如图②,连接OB,OD,OC,

    ∵AD平分∠CAB,且∠CAB=60°,
    ∴∠DAB=∠CAB=30°,
    ∴∠DOB=2∠DAB=60°.
    又∵OB=OD,
    ∴△OBD是等边三角形,
    ∴BD=OB=OD.
    ∵⊙O的直径为10,则OB=5,
    ∴BD=5,
    ∵AD平分∠CAB,
    ∴,
    ∴OD⊥BC,设垂足为E,
    ∴BE=EC=OB•sin60°=,
    ∴BC=5.
    【点睛】
    本题考查圆周角定理,垂径定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.
    25、(1)甲型号的产品有10万只,则乙型号的产品有10万只;(2)安排甲型号产品生产15万只,乙型号产品生产5万只,可获得最大利润91万元.
    【解析】
    (1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,根据销售收入为300万元可列方程18x+12(20﹣x)=300,解方程即可;
    (2)设安排甲型号产品生产y万只,则乙型号产品生产(20﹣y)万只,根据公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元列出不等式,求出不等式的解集确定出y的范围,再根据利润=售价﹣成本列出W与y的一次函数,根据y的范围确定出W的最大值即可.
    【详解】
    (1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,
    根据题意得:18x+12(20﹣x)=300,
    解得:x=10,
    则20﹣x=20﹣10=10,
    则甲、乙两种型号的产品分别为10万只,10万只;
    (2)设安排甲型号产品生产y万只,则乙型号产品生产(20﹣y)万只,
    根据题意得:13y+8.8(20﹣y)≤239,
    解得:y≤15,
    根据题意得:利润W=(18﹣12﹣1)y+(12﹣8﹣0.8)(20﹣y)=1.8y+64,
    当y=15时,W最大,最大值为91万元.
    所以安排甲型号产品生产15万只,乙型号产品生产5万只时,可获得最大利润为91万元.
    考点:一元一次方程的应用;一元一次不等式的应用;一次函数的应用.
    26、(1)详见解析;(2)详见解析.
    【解析】
    (1)根据平行线的性质结合角平分线的性质可得出∠BCA=∠BAC,进而可得出BA=BC,根据等角的余角相等结合等角对等边,即可得出AB=BE,进而可得出BE=BA=BC,此题得证;
    (2)根据AC2=DC•EC结合∠ACD=∠ECA可得出△ACD∽△ECA,根据相似三角形的性质可得出∠ADC=∠EAC=90°,进而可得出∠FDA=∠FAC=90°,结合∠AFD=∠CFA可得出△AFD∽△CFA,再利用相似三角形的性质可证出AD:AF=AC:FC.
    【详解】
    (1)∵DC∥AB,∴∠DCA=∠BAC.
    ∵AC平分∠BCD,∴∠BCA=∠BAC=∠DCA,∴BA=BC.
    ∵∠BAC+∠BAE=90°,∠ACB+∠E =90°,∴∠BAE=∠E,∴AB=BE,∴BE=BA=BC,∴B是EC的中点;
    (2)∵AC2=DC•EC,∴.
    ∵∠ACD=∠ECA,∴△ACD∽△ECA,∴∠ADC=∠EAC=90°,∴∠FDA=∠FAC=90°.
    又∵∠AFD=∠CFA,∴△AFD∽△CFA,∴AD:AF=AC:FC.

    【点睛】
    本题考查了相似三角形的判定与性质、角平分线的性质以及等腰三角形的性质,解题的关键是:(1)利用等角对等边找出BA=BC、BE=BA;(2)利用相似三角形的判定定理找出△AFD∽△CFA.
    27、(1)见解析;(2)tan∠DBC=.
    【解析】
    (1)先利用圆周角定理得到∠ACB=90°,再利用平行线的性质得∠AEO=90°,则根据垂径定理得到,从而有AD=CD;
    (2)先在Rt△OAE中利用勾股定理计算出AE,则根据正切的定义得到tan∠DAE的值,然后根据圆周角定理得到∠DAC=∠DBC,从而可确定tan∠DBC的值.
    【详解】
    (1)证明:∵AB为直径,
    ∴∠ACB=90°,
    ∵OD∥BC,
    ∴∠AEO=∠ACB=90°,
    ∴OE⊥AC,
    ∴,
    ∴AD=CD;
    (2)解:∵AB=10,
    ∴OA=OD=5,
    ∴DE=OD﹣OE=5﹣3=2,
    在Rt△OAE中,AE==4,
    ∴tan∠DAE=,
    ∵∠DAC=∠DBC,
    ∴tan∠DBC=.
    【点睛】
    垂径定理及圆周角定理是本题的考点,熟练掌握垂径定理及圆周角定理是解题的关键.

    相关试卷

    2023年浙江省宁波市五校联考中考数学模拟试卷: 这是一份2023年浙江省宁波市五校联考中考数学模拟试卷,共27页。

    2023年浙江省宁波市五校联考中考数学模拟试卷(含解析): 这是一份2023年浙江省宁波市五校联考中考数学模拟试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年浙江省宁波市五校联考中考数学模拟试卷(含解析): 这是一份2023年浙江省宁波市五校联考中考数学模拟试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map