浙江省宁波市鄞州区七校2021-2022学年中考数学模拟预测题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.某班将举行“庆祝建党95周年知识竞赛”活动,班长安排小明购买奖品,如图是小明买回奖品时与班长的对话情境:请根据如图对话信息,计算乙种笔记本买了( )
A.25本 B.20本 C.15本 D.10本
2.的值是( )
A.1 B.﹣1 C.3 D.﹣3
3.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②3b+2c<0;③4a+c<2b;④m(am+b)+b<a(m≠﹣1),其中结论正确的个数是( )
A.1 B.2 C.3 D.4
4.要使分式有意义,则x的取值应满足( )
A.x=﹣2 B.x≠2 C.x>﹣2 D.x≠﹣2
5.如图,△ABC中,BC=4,⊙P与△ABC的边或边的延长线相切.若⊙P半径为2,△ABC的面积为5,则△ABC的周长为( )
A.8 B.10 C.13 D.14
6.三角形两边的长是3和4,第三边的长是方程x2-12x+35=0的根,则该三角形的周长为( )
A.14 B.12 C.12或14 D.以上都不对
7.如图,小颖为测量学校旗杆AB的高度,她在E处放置一块镜子,然后退到C处站立,刚好从镜子中看到旗杆的顶部B.已知小颖的眼睛D离地面的高度CD=1.5m,她离镜子的水平距离CE=0.5m,镜子E离旗杆的底部A处的距离AE=2m,且A、C、E三点在同一水平直线上,则旗杆AB的高度为( )
A.4.5m B.4.8m C.5.5m D.6 m
8.某排球队名场上队员的身高(单位:)是:,,,,,.现用一名身高为的队员换下场上身高为的队员,与换人前相比,场上队员的身高( )
A.平均数变小,方差变小 B.平均数变小,方差变大
C.平均数变大,方差变小 D.平均数变大,方差变大
9.如图,不等式组的解集在数轴上表示正确的是( )
A. B.
C. D.
10.吉林市面积约为27100平方公里,将27100这个数用科学记数法表示为( )
A.27.1×102 B.2.71×103 C.2.71×104 D.0.271×105
二、填空题(共7小题,每小题3分,满分21分)
11.已知矩形ABCD,AD>AB,以矩形ABCD的一边为边画等腰三角形,使得它的第三个顶点在矩形ABCD的其他边上,则可以画出的不同的等腰三角形的个数为_______________.
12.方程的根是________.
13.已知抛物线y=x2﹣x+3与y轴相交于点M,其顶点为N,平移该抛物线,使点M平移后的对应点M′与点N重合,则平移后的抛物线的解析式为_____.
14.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的正弦值为__.
15.如图,折叠长方形纸片ABCD,先折出对角线BD,再将AD折叠到BD上,得到折痕DE,点A的对应点是点F,若AB=8,BC=6,则AE的长为_____.
16.在由乙猜甲刚才想的数字游戏中,把乙猜的数字记为b且,a,b是0,1,2,3四个数中的其中某一个,若|a﹣b|≤1则称甲乙”心有灵犀”.现任意找两个人玩这个游戏,得出他们”心有灵犀”的概率为_____.
17.如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知折痕AE=5cm, 且tan∠EFC=,那么矩形ABCD的周长_____________cm.
三、解答题(共7小题,满分69分)
18.(10分)某商场甲、乙两名业务员10个月的销售额(单位:万元)如下:
甲
7.2 9.69.67.89.3 4 6.58.59.99.6
乙
5.89.79.76.89.96.98.26.78.69.7
根据上面的数据,将下表补充完整:
4.0≤x≤4.9
5.0≤x≤5.9
6.0≤x≤6.9
7.0≤x≤7.9
8.0≤x≤8.9
9.0≤x≤10.0
甲
1
0
1
2
1
5
乙
____
____
_____
______
_____
_______
(说明:月销售额在8.0万元及以上可以获得奖金,7.0~7.9万元为良好,6.0~6.9万元为合格,6.0万元以下为不合格)
两组样本数据的平均数、中位数、众数如表所示:
结论:
人员
平均数(万元)
中位数(万元)
众数(万元)
甲
8.2
8.9
9.6
乙
8.2
8.4
9.7
(1)估计乙业务员能获得奖金的月份有______个;
(2)可以推断出_____业务员的销售业绩好,理由为_______.(至少从两个不同的角度说明推断的合理性)
19.(5分)对x,y定义一种新运算T,规定T(x,y)=(其中a,b是非零常数,且x+y≠0),这里等式右边是通常的四则运算.
如:T(3,1)=,T(m,﹣2)=.填空:T(4,﹣1)= (用含a,b的代数式表示);若T(﹣2,0)=﹣2且T(5,﹣1)=1.
①求a与b的值;
②若T(3m﹣10,m)=T(m,3m﹣10),求m的值.
20.(8分)如图,点A、B、C、D在同一条直线上,CE∥DF,EC=BD,AC=FD,求证:AE=FB.
21.(10分)解不等式组,并写出该不等式组的最大整数解.
22.(10分)(1)计算:.
(2)解方程:x2﹣4x+2=0
23.(12分)某中学为了解学生平均每天“诵读经典”的时间,在全校范围内随机抽查了部分学生进行调查统计(设每天的诵读时间为分钟),将调查统计的结果分为四个等级:Ⅰ级、Ⅱ级、Ⅲ级、Ⅳ级.将收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:
()请补全上面的条形图.
()所抽查学生“诵读经典”时间的中位数落在__________级.
()如果该校共有名学生,请你估计该校平均每天“诵读经典”的时间不低于分钟的学生约有多少人?
24.(14分)黄岩某校搬迁后,需要增加教师和学生的寝室数量,寝室有三类,分别为单人间(供一个人住宿),双人间(供两个人住宿),四人间(供四个人住宿).因实际需要,单人间的数量在20至30之间(包括20和30),且四人间的数量是双人间的5倍.
(1)若2018年学校寝室数为64个,以后逐年增加,预计2020年寝室数达到121个,求2018至2020年寝室数量的年平均增长率;
(2)若三类不同的寝室的总数为121个,则最多可供多少师生住宿?
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
设甲种笔记本买了x本,甲种笔记本的单价是y元,则乙种笔记本买了(40﹣x)本,乙种笔记本的单价是(y+3)元,根据题意列出关于x、y的二元一次方程组,求出x、y的值即可.
【详解】
解:设甲种笔记本买了x本,甲种笔记本的单价是y元,则乙种笔记本买了(40﹣x)本,乙种笔记本的单价是(y+3)元,
根据题意,得:,
解得:,
答:甲种笔记本买了25本,乙种笔记本买了15本.
故选C.
【点睛】
本题考查的是二元二次方程组的应用,能根据题意得出关于x、y的二元二次方程组是解答此题的关键.
2、B
【解析】
直接利用立方根的定义化简得出答案.
【详解】
因为(-1)3=-1,
=﹣1.
故选:B.
【点睛】
此题主要考查了立方根,正确把握立方根的定义是解题关键.,
3、C
【解析】
试题解析:∵图象与x轴有两个交点,
∴方程ax2+bx+c=0有两个不相等的实数根,
∴b2﹣4ac>0,
∴4ac﹣b2<0,
①正确;
∵﹣=﹣1,
∴b=2a,
∵a+b+c<0,
∴b+b+c<0,3b+2c<0,
∴②是正确;
∵当x=﹣2时,y>0,
∴4a﹣2b+c>0,
∴4a+c>2b,
③错误;
∵由图象可知x=﹣1时该二次函数取得最大值,
∴a﹣b+c>am2+bm+c(m≠﹣1).
∴m(am+b)<a﹣b.故④正确
∴正确的有①②④三个,
故选C.
考点:二次函数图象与系数的关系.
【详解】
请在此输入详解!
4、D
【解析】
试题分析:∵分式有意义,∴x+1≠0,∴x≠﹣1,即x的取值应满足:x≠﹣1.故选D.
考点:分式有意义的条件.
5、C
【解析】
根据三角形的面积公式以及切线长定理即可求出答案.
【详解】
连接PE、PF、PG,AP,
由题意可知:∠PEC=∠PFA=PGA=90°,
∴S△PBC=BC•PE=×4×2=4,
∴由切线长定理可知:S△PFC+S△PBG=S△PBC=4,
∴S四边形AFPG=S△ABC+S△PFC+S△PBG+S△PBC=5+4+4=13,
∴由切线长定理可知:S△APG=S四边形AFPG=,
∴=×AG•PG,
∴AG=,
由切线长定理可知:CE=CF,BE=BG,
∴△ABC的周长为AC+AB+CE+BE
=AC+AB+CF+BG
=AF+AG
=2AG
=13,
故选C.
【点睛】
本题考查切线长定理,解题的关键是画出辅助线,熟练运用切线长定理,本题属于中等题型.
6、B
【解析】
解方程得:x=5或x=1.
当x=1时,3+4=1,不能组成三角形;
当x=5时,3+4>5,三边能够组成三角形.
∴该三角形的周长为3+4+5=12,
故选B.
7、D
【解析】
根据题意得出△ABE∽△CDE,进而利用相似三角形的性质得出答案.
【详解】
解:由题意可得:AE=2m,CE=0.5m,DC=1.5m,
∵△ABC∽△EDC,
∴,
即,
解得:AB=6,
故选:D.
【点睛】
本题考查的是相似三角形在实际生活中的应用,根据题意得出△ABE∽△CDE是解答此题的关键.
8、A
【解析】
分析:根据平均数的计算公式进行计算即可,根据方差公式先分别计算出甲和乙的方差,再根据方差的意义即可得出答案.
详解:换人前6名队员身高的平均数为==188,
方差为S2==;
换人后6名队员身高的平均数为==187,
方差为S2==
∵188>187,>,
∴平均数变小,方差变小,
故选:A.
点睛:本题考查了平均数与方差的定义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
9、B
【解析】
首先分别解出两个不等式,再确定不等式组的解集,然后在数轴上表示即可.
【详解】
解:解第一个不等式得:x>-1;
解第二个不等式得:x≤1,
在数轴上表示,
故选B.
【点睛】
此题主要考查了解一元一次不等式组,以及在数轴上表示解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时 “≥” ,“≤” 要用实心圆点表示; “ <“ >” 要用空心圆点表示.
10、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
将27100用科学记数法表示为:. 2.71×104.
故选:C.
【点睛】
本题考查科学记数法—表示较大的数。
二、填空题(共7小题,每小题3分,满分21分)
11、8
【解析】
根据题意作出图形即可得出答案,
【详解】
如图,AD>AB,△CDE1,△ABE2,△ABE3,△BCE4,△CDE5,△ABE6,△ADE7,△CDE8,为等腰三角形,故有8个满足题意得点.
【点睛】
此题主要考查矩形的对称性,解题的关键是根据题意作出图形.
12、x=2
【解析】
分析:解此方程首先要把它化为我们熟悉的方程(一元二次方程),解新方程,检验是否符合题意,即可求得原方程的解.
详解:据题意得:2+2x=x2,
∴x2﹣2x﹣2=0,
∴(x﹣2)(x+1)=0,
∴x1=2,x2=﹣1.
∵≥0,
∴x=2.
故答案为:2.
点睛:本题考查了学生综合应用能力,解方程时要注意解题方法的选择,在求值时要注意解的检验.
13、y=(x﹣1)2+
【解析】
直接利用抛物线与坐标轴交点求法结合顶点坐标求法分别得出M、N点坐标,进而得出平移方向和距离,即可得出平移后解析式.
【详解】
解:y=x2-x+3=(x-)2+,
∴N点坐标为:(,),
令x=0,则y=3,
∴M点的坐标是(0,3).
∵平移该抛物线,使点M平移后的对应点M′与点N重合,
∴抛物线向下平移个单位长度,再向右平移个单位长度即可,
∴平移后的解析式为:y=(x-1)2+.
故答案是:y=(x-1)2+.
【点睛】
此题主要考查了抛物线与坐标轴交点求法以及二次函数的平移,正确得出平移方向和距离是解题关键.
14、
【解析】
首先利用勾股定理计算出AB2,BC2,AC2,再根据勾股定理逆定理可证明∠BCA=90°,然后得到∠ABC的度数,再利用特殊角的三角函数可得∠ABC的正弦值.
【详解】
解:
连接AC
AB2=32+12=10,BC2=22+12=5,AC2=22+12=5,
∴AC=CB,BC2+AC2=AB2,
∴∠BCA=90°,
∴∠ABC=45°,
∴∠ABC的正弦值为.
故答案为:.
【点睛】
此题主要考查了锐角三角函数,以及勾股定理逆定理,关键是掌握特殊角的三角函数.
15、3
【解析】
先利用勾股定理求出BD,再求出DF、BF,设AE=EF=x.在Rt△BEF中,由EB2=EF2+BF2,列出方程即可解决问题.
【详解】
∵四边形ABCD是矩形,∴∠A=90°.
∵AB=8,AD=6,∴BD1.
∵△DEF是由△DEA翻折得到,∴DF=AD=6,BF=2.设AE=EF=x.在Rt△BEF中,∵EB2=EF2+BF2,∴(8﹣x)2=x2+22,解得:x=3,∴AE=3.
故答案为:3.
【点睛】
本题考查了矩形的性质、勾股定理等知识,解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.
16、
【解析】
利用P(A)=,进行计算概率.
【详解】
从0,1,2,3四个数中任取两个则|a﹣b|≤1的情况有0,0;1,1;2,2;3,3;0,1;1,0;1,2;2,1;2,3;3,2;共10种情况,甲乙出现的结果共有4×4=16,故出他们”心有灵犀”的概率为.
故答案是:.
【点睛】
本题考查了概率的简单计算能力,是一道列举法求概率的问题,属于基础题,可以直接应用求概率的公式.
17、36.
【解析】
试题分析:∵△AFE和△ADE关于AE对称,∴∠AFE=∠D=90°,AF=AD,EF=DE.∵tan∠EFC==,∴可设EC=3x,CF=4x,那么EF=5x,∴DE=EF=5x.∴DC=DE+CE=3x+5x=8x.∴AB=DC=8x.
∵∠EFC+∠AFB=90°, ∠BAF+∠AFB=90°,∴∠EFC=∠BAF.∴tan∠BAF=tan∠EFC=,∴=.∴AB=8x,∴BF=6x.∴BC=BF+CF=10x.∴AD=10x.在Rt△ADE中,由勾股定理,得AD2+DE2=AE2.∴(10x)2+(5x)2=(5)2.解得x=1.∴AB=8x=8,AD=10x=10.∴矩形ABCD的周长=8×2+10×2=36.
考点:折叠的性质;矩形的性质;锐角三角函数;勾股定理.
三、解答题(共7小题,满分69分)
18、填表见解析;(1)6;(2)甲;甲的销售额的中位数较大,并且甲月销售额在9万元以上的月份多.
【解析】
(1)月销售额在8.0万元及以上可以获得奖金,去销售额中找到乙大于8.0的个数即可解题,
(2)根据中位数和平均数即可解题.
【详解】
解:如图,
销售额
数量
x
人员
4.0≤x≤4.9
5.0≤x≤5.9
6.0≤x≤6.9
7.0≤x≤7.9
8.0≤x≤8.9
9.0≤x≤10.0
甲
1
0
1
2
1
5
乙
0
1
3
0
2
4
(1)估计乙业务员能获得奖金的月份有6个;
(2)可以推断出甲业务员的销售业绩好,理由为:甲的销售额的中位数较大,并且甲月销售额在9万元以上的月份多.
故答案为0,1,3,0,2,4;6;甲,甲的销售额的中位数较大,并且甲月销售额在9万元以上的月份多.
【点睛】
本题考查了统计的相关知识,众数,平均数的应用,属于简单题,将图表信息转换成有用信息是解题关键.
19、(1) ;(2)①a=1,b=-1,②m=2.
【解析】
(1)根据题目中的新运算法则计算即可;
(2)①根据题意列出方程组即可求出a,b的值;
②先分别算出T(3m﹣3,m)与T(m,3m﹣3)的值,再根据求出的值列出等式即可得出结论.
【详解】
解:(1)T(4,﹣1)=
=;
故答案为;
(2)①∵T(﹣2,0)=﹣2且T(2,﹣1)=1,
∴
解得
②解法一:
∵a=1,b=﹣1,且x+y≠0,
∴T(x,y)===x﹣y.
∴T(3m﹣3,m)=3m﹣3﹣m=2m﹣3,
T(m,3m﹣3)=m﹣3m+3=﹣2m+3.
∵T(3m﹣3,m)=T(m,3m﹣3),
∴2m﹣3=﹣2m+3,
解得,m=2.
解法二:由解法①可得T(x,y)=x﹣y,
当T(x,y)=T(y,x)时,
x﹣y=y﹣x,
∴x=y.
∵T(3m﹣3,m)=T(m,3m﹣3),
∴3m﹣3=m,
∴m=2.
【点睛】
本题关键是能够把新运算转化为我们学过的知识,并应用一元一次方程或二元一次方程进行解题..
20、见解析
【解析】
根据CE∥DF,可得∠ECA=∠FDB,再利用SAS证明△ACE≌△FDB,得出对应边相等即可.
【详解】
解:∵CE∥DF
∴∠ECA=∠FDB,
在△ECA和△FDB中
∴△ECA≌△FDB,
∴AE=FB.
【点睛】
本题主要考查全等三角形的判定与性质和平行线的性质;熟练掌握平行线的性质,证明三角形全等是解决问题的关键.
21、﹣2,﹣1,0
【解析】
分析:先解不等式①,去括号,移项,系数化为1,再解不等式②,取分母,移项,然后找出不等式组的解集.
本题解析:
,
解不等式①得,x≥−2,
解不等式②得,x<1,
∴不等式组的解集为−2≤x<1.
∴不等式组的最大整数解为x=0,
22、(1)-1;(2)x1=2+,x2=2﹣
【解析】
(1)按照实数的运算法则依次计算即可;
(2)利用配方法解方程.
【详解】
(1)原式=﹣2﹣1+2×=﹣1;
(2)x2﹣4x+2=0,
x2﹣4x=﹣2,
x2﹣4x+4=﹣2+4,即(x﹣2)2=2,
∴x﹣2=±,
∴x1=2+,x2=2﹣.
【点睛】
此题考查计算能力,(1)考查实数的计算,正确掌握绝对值的定义,零次幂的定义,特殊角度的三角函数值是解题的关键;(2)是解一元二次方程,能根据方程的特点选择适合的解法是解题的关键.
23、)补全的条形图见解析()Ⅱ级.().
【解析】
试题分析:(1)根据Ⅱ级的人数和所占的百分比即可求出总数,从而求出三级人数,进而补全图形;
(2)把所有同类数据按照从小到大的顺序排列,中间的数据是中位数,则该数在Ⅱ级.;
(3)由样本估计总体,由于时间不低于的人数占,故该类学生约有408人.
试题解析: (1)本次随机抽查的人数为:20÷40%=50(人).三级人数为:50-13-20-7=10.
补图如下:
(2)把所有同类数据按照从小到大的顺序排列,中间的数据是中位数,则该数在Ⅱ级.
(3)由样本估计总体,由于时间不低于的人数占,所以该类学生约有.
24、(1)2018至2020年寝室数量的年平均增长率为37.5%;(2)该校的寝室建成后最多可供1名师生住宿.
【解析】
(1)设2018至2020年寝室数量的年平均增长率为x,根据2018及2020年寝室数量,即可得出关于x的一元二次方程,解之取其正值即可得出结论;
(2)设双人间有y间,则四人间有5y间,单人间有(121-6y)间,可容纳人数为w人,由单人间的数量在20至30之间(包括20和30),即可得出关于y的一元一次不等式组,解之即可得出y的取值范围,再根据可住师生数=寝室数×每间寝室可住人数,可找出w关于y的函数关系式,利用一次函数的性质即可解决最值问题.
【详解】
(1)解:设2018至2020年寝室数量的年平均增长率为x,
根据题意得:64(1+x)2=121,
解得:x1=0.375=37.5%,x2=﹣2.375(不合题意,舍去).
答:2018至2020年寝室数量的年平均增长率为37.5%.
(2)解:设双人间有y间,可容纳人数为w人,则四人间有5y间,单人间有(121﹣6y)间,
∵单人间的数量在20至30之间(包括20和30),
∴ ,
解得:15 ≤y≤16 .
根据题意得:w=2y+20y+121﹣6y=16y+121,
∴当y=16时,16y+121取得最大值为1.
答:该校的寝室建成后最多可供1名师生住宿.
【点睛】
本题考查了一元二次方程的应用、一元一次不等式组的应用以及一次函数的性质,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量之间的关系,找出w关于y的函数关系式.
2024年浙江省宁波市鄞州区十二校中考数学模拟试卷(4月份)(含解析): 这是一份2024年浙江省宁波市鄞州区十二校中考数学模拟试卷(4月份)(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
浙江省宁波市李兴贵中学2021-2022学年中考数学模拟预测题含解析: 这是一份浙江省宁波市李兴贵中学2021-2022学年中考数学模拟预测题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,计算的结果是,已知二次函数y=3等内容,欢迎下载使用。
浙江宁波鄞州区市级名校2021-2022学年中考数学模拟预测题含解析: 这是一份浙江宁波鄞州区市级名校2021-2022学年中考数学模拟预测题含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,某排球队名场上队员的身高等内容,欢迎下载使用。