|试卷下载
终身会员
搜索
    上传资料 赚现金
    浙江省宁波市鄞州区七校2021-2022学年中考数学模拟预测题含解析
    立即下载
    加入资料篮
    浙江省宁波市鄞州区七校2021-2022学年中考数学模拟预测题含解析01
    浙江省宁波市鄞州区七校2021-2022学年中考数学模拟预测题含解析02
    浙江省宁波市鄞州区七校2021-2022学年中考数学模拟预测题含解析03
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    浙江省宁波市鄞州区七校2021-2022学年中考数学模拟预测题含解析

    展开
    这是一份浙江省宁波市鄞州区七校2021-2022学年中考数学模拟预测题含解析,共18页。试卷主要包含了答题时请按要求用笔,某排球队名场上队员的身高等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.某班将举行“庆祝建党95周年知识竞赛”活动,班长安排小明购买奖品,如图是小明买回奖品时与班长的对话情境:请根据如图对话信息,计算乙种笔记本买了(  )

    A.25本 B.20本 C.15本 D.10本
    2.的值是(  )
    A.1 B.﹣1 C.3 D.﹣3
    3.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②3b+2c<0;③4a+c<2b;④m(am+b)+b<a(m≠﹣1),其中结论正确的个数是(  )

    A.1 B.2 C.3 D.4
    4.要使分式有意义,则x的取值应满足( )
    A.x=﹣2 B.x≠2 C.x>﹣2 D.x≠﹣2
    5.如图,△ABC中,BC=4,⊙P与△ABC的边或边的延长线相切.若⊙P半径为2,△ABC的面积为5,则△ABC的周长为( )

    A.8 B.10 C.13 D.14
    6.三角形两边的长是3和4,第三边的长是方程x2-12x+35=0的根,则该三角形的周长为( )
    A.14 B.12 C.12或14 D.以上都不对
    7.如图,小颖为测量学校旗杆AB的高度,她在E处放置一块镜子,然后退到C处站立,刚好从镜子中看到旗杆的顶部B.已知小颖的眼睛D离地面的高度CD=1.5m,她离镜子的水平距离CE=0.5m,镜子E离旗杆的底部A处的距离AE=2m,且A、C、E三点在同一水平直线上,则旗杆AB的高度为(  )

    A.4.5m B.4.8m C.5.5m D.6 m
    8.某排球队名场上队员的身高(单位:)是:,,,,,.现用一名身高为的队员换下场上身高为的队员,与换人前相比,场上队员的身高( )
    A.平均数变小,方差变小 B.平均数变小,方差变大
    C.平均数变大,方差变小 D.平均数变大,方差变大
    9.如图,不等式组的解集在数轴上表示正确的是(  )
    A. B.
    C. D.
    10.吉林市面积约为27100平方公里,将27100这个数用科学记数法表示为(  )
    A.27.1×102 B.2.71×103 C.2.71×104 D.0.271×105
    二、填空题(共7小题,每小题3分,满分21分)
    11.已知矩形ABCD,AD>AB,以矩形ABCD的一边为边画等腰三角形,使得它的第三个顶点在矩形ABCD的其他边上,则可以画出的不同的等腰三角形的个数为_______________.

    12.方程的根是________.
    13.已知抛物线y=x2﹣x+3与y轴相交于点M,其顶点为N,平移该抛物线,使点M平移后的对应点M′与点N重合,则平移后的抛物线的解析式为_____.
    14.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的正弦值为__.

    15.如图,折叠长方形纸片ABCD,先折出对角线BD,再将AD折叠到BD上,得到折痕DE,点A的对应点是点F,若AB=8,BC=6,则AE的长为_____.

    16.在由乙猜甲刚才想的数字游戏中,把乙猜的数字记为b且,a,b是0,1,2,3四个数中的其中某一个,若|a﹣b|≤1则称甲乙”心有灵犀”.现任意找两个人玩这个游戏,得出他们”心有灵犀”的概率为_____.
    17.如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知折痕AE=5cm, 且tan∠EFC=,那么矩形ABCD的周长_____________cm.

    三、解答题(共7小题,满分69分)
    18.(10分)某商场甲、乙两名业务员10个月的销售额(单位:万元)如下:

    7.2 9.69.67.89.3 4 6.58.59.99.6

    5.89.79.76.89.96.98.26.78.69.7
    根据上面的数据,将下表补充完整:

    4.0≤x≤4.9
    5.0≤x≤5.9
    6.0≤x≤6.9
    7.0≤x≤7.9
    8.0≤x≤8.9
    9.0≤x≤10.0

    1
    0
    1
    2
    1
    5

    ____
    ____
    _____
    ______
    _____
    _______
    (说明:月销售额在8.0万元及以上可以获得奖金,7.0~7.9万元为良好,6.0~6.9万元为合格,6.0万元以下为不合格)
    两组样本数据的平均数、中位数、众数如表所示:
    结论:
    人员
    平均数(万元)
    中位数(万元)
    众数(万元)

    8.2
    8.9
    9.6

    8.2
    8.4
    9.7
    (1)估计乙业务员能获得奖金的月份有______个;
    (2)可以推断出_____业务员的销售业绩好,理由为_______.(至少从两个不同的角度说明推断的合理性)
    19.(5分)对x,y定义一种新运算T,规定T(x,y)=(其中a,b是非零常数,且x+y≠0),这里等式右边是通常的四则运算.
    如:T(3,1)=,T(m,﹣2)=.填空:T(4,﹣1)=   (用含a,b的代数式表示);若T(﹣2,0)=﹣2且T(5,﹣1)=1.
    ①求a与b的值;
    ②若T(3m﹣10,m)=T(m,3m﹣10),求m的值.
    20.(8分)如图,点A、B、C、D在同一条直线上,CE∥DF,EC=BD,AC=FD,求证:AE=FB.

    21.(10分)解不等式组,并写出该不等式组的最大整数解.
    22.(10分)(1)计算:.
    (2)解方程:x2﹣4x+2=0
    23.(12分)某中学为了解学生平均每天“诵读经典”的时间,在全校范围内随机抽查了部分学生进行调查统计(设每天的诵读时间为分钟),将调查统计的结果分为四个等级:Ⅰ级、Ⅱ级、Ⅲ级、Ⅳ级.将收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:

    ()请补全上面的条形图.
    ()所抽查学生“诵读经典”时间的中位数落在__________级.
    ()如果该校共有名学生,请你估计该校平均每天“诵读经典”的时间不低于分钟的学生约有多少人?
    24.(14分)黄岩某校搬迁后,需要增加教师和学生的寝室数量,寝室有三类,分别为单人间(供一个人住宿),双人间(供两个人住宿),四人间(供四个人住宿).因实际需要,单人间的数量在20至30之间(包括20和30),且四人间的数量是双人间的5倍.
    (1)若2018年学校寝室数为64个,以后逐年增加,预计2020年寝室数达到121个,求2018至2020年寝室数量的年平均增长率;
    (2)若三类不同的寝室的总数为121个,则最多可供多少师生住宿?



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    设甲种笔记本买了x本,甲种笔记本的单价是y元,则乙种笔记本买了(40﹣x)本,乙种笔记本的单价是(y+3)元,根据题意列出关于x、y的二元一次方程组,求出x、y的值即可.
    【详解】
    解:设甲种笔记本买了x本,甲种笔记本的单价是y元,则乙种笔记本买了(40﹣x)本,乙种笔记本的单价是(y+3)元,
    根据题意,得:,
    解得:,
    答:甲种笔记本买了25本,乙种笔记本买了15本.
    故选C.
    【点睛】
    本题考查的是二元二次方程组的应用,能根据题意得出关于x、y的二元二次方程组是解答此题的关键.
    2、B
    【解析】
    直接利用立方根的定义化简得出答案.
    【详解】
    因为(-1)3=-1,
    =﹣1.
    故选:B.
    【点睛】
    此题主要考查了立方根,正确把握立方根的定义是解题关键.,
    3、C
    【解析】
    试题解析:∵图象与x轴有两个交点,
    ∴方程ax2+bx+c=0有两个不相等的实数根,
    ∴b2﹣4ac>0,
    ∴4ac﹣b2<0,
    ①正确;
    ∵﹣=﹣1,
    ∴b=2a,
    ∵a+b+c<0,
    ∴b+b+c<0,3b+2c<0,
    ∴②是正确;
    ∵当x=﹣2时,y>0,
    ∴4a﹣2b+c>0,
    ∴4a+c>2b,
    ③错误;
    ∵由图象可知x=﹣1时该二次函数取得最大值,
    ∴a﹣b+c>am2+bm+c(m≠﹣1).
    ∴m(am+b)<a﹣b.故④正确
    ∴正确的有①②④三个,
    故选C.
    考点:二次函数图象与系数的关系.
    【详解】
    请在此输入详解!
    4、D
    【解析】
    试题分析:∵分式有意义,∴x+1≠0,∴x≠﹣1,即x的取值应满足:x≠﹣1.故选D.
    考点:分式有意义的条件.
    5、C
    【解析】
    根据三角形的面积公式以及切线长定理即可求出答案.
    【详解】
    连接PE、PF、PG,AP,
    由题意可知:∠PEC=∠PFA=PGA=90°,
    ∴S△PBC=BC•PE=×4×2=4,
    ∴由切线长定理可知:S△PFC+S△PBG=S△PBC=4,
    ∴S四边形AFPG=S△ABC+S△PFC+S△PBG+S△PBC=5+4+4=13,
    ∴由切线长定理可知:S△APG=S四边形AFPG=,
    ∴=×AG•PG,
    ∴AG=,
    由切线长定理可知:CE=CF,BE=BG,
    ∴△ABC的周长为AC+AB+CE+BE
    =AC+AB+CF+BG
    =AF+AG
    =2AG
    =13,
    故选C.

    【点睛】
    本题考查切线长定理,解题的关键是画出辅助线,熟练运用切线长定理,本题属于中等题型.
    6、B
    【解析】
    解方程得:x=5或x=1.
    当x=1时,3+4=1,不能组成三角形;
    当x=5时,3+4>5,三边能够组成三角形.
    ∴该三角形的周长为3+4+5=12,
    故选B.
    7、D
    【解析】
    根据题意得出△ABE∽△CDE,进而利用相似三角形的性质得出答案.
    【详解】
    解:由题意可得:AE=2m,CE=0.5m,DC=1.5m,
    ∵△ABC∽△EDC,
    ∴,
    即,
    解得:AB=6,
    故选:D.
    【点睛】
    本题考查的是相似三角形在实际生活中的应用,根据题意得出△ABE∽△CDE是解答此题的关键.
    8、A
    【解析】
    分析:根据平均数的计算公式进行计算即可,根据方差公式先分别计算出甲和乙的方差,再根据方差的意义即可得出答案.
    详解:换人前6名队员身高的平均数为==188,
    方差为S2==;
    换人后6名队员身高的平均数为==187,
    方差为S2==
    ∵188>187,>,
    ∴平均数变小,方差变小,
    故选:A.
    点睛:本题考查了平均数与方差的定义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
    9、B
    【解析】
    首先分别解出两个不等式,再确定不等式组的解集,然后在数轴上表示即可.
    【详解】
    解:解第一个不等式得:x>-1;
    解第二个不等式得:x≤1,
    在数轴上表示,
    故选B.
    【点睛】
    此题主要考查了解一元一次不等式组,以及在数轴上表示解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时 “≥” ,“≤” 要用实心圆点表示; “ <“ >” 要用空心圆点表示.
    10、C
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    将27100用科学记数法表示为:. 2.71×104.
    故选:C.
    【点睛】
    本题考查科学记数法—表示较大的数。

    二、填空题(共7小题,每小题3分,满分21分)
    11、8
    【解析】
    根据题意作出图形即可得出答案,
    【详解】
    如图,AD>AB,△CDE1,△ABE2,△ABE3,△BCE4,△CDE5,△ABE6,△ADE7,△CDE8,为等腰三角形,故有8个满足题意得点.

    【点睛】
    此题主要考查矩形的对称性,解题的关键是根据题意作出图形.
    12、x=2
    【解析】
    分析:解此方程首先要把它化为我们熟悉的方程(一元二次方程),解新方程,检验是否符合题意,即可求得原方程的解.
    详解:据题意得:2+2x=x2,
    ∴x2﹣2x﹣2=0,
    ∴(x﹣2)(x+1)=0,
    ∴x1=2,x2=﹣1.
    ∵≥0,
    ∴x=2.
    故答案为:2.
    点睛:本题考查了学生综合应用能力,解方程时要注意解题方法的选择,在求值时要注意解的检验.
    13、y=(x﹣1)2+
    【解析】
    直接利用抛物线与坐标轴交点求法结合顶点坐标求法分别得出M、N点坐标,进而得出平移方向和距离,即可得出平移后解析式.
    【详解】
    解:y=x2-x+3=(x-)2+,
    ∴N点坐标为:(,),
    令x=0,则y=3,
    ∴M点的坐标是(0,3).
    ∵平移该抛物线,使点M平移后的对应点M′与点N重合,
    ∴抛物线向下平移个单位长度,再向右平移个单位长度即可,
    ∴平移后的解析式为:y=(x-1)2+.
    故答案是:y=(x-1)2+.
    【点睛】
    此题主要考查了抛物线与坐标轴交点求法以及二次函数的平移,正确得出平移方向和距离是解题关键.
    14、
    【解析】
    首先利用勾股定理计算出AB2,BC2,AC2,再根据勾股定理逆定理可证明∠BCA=90°,然后得到∠ABC的度数,再利用特殊角的三角函数可得∠ABC的正弦值.
    【详解】
    解:
    连接AC

    AB2=32+12=10,BC2=22+12=5,AC2=22+12=5,
    ∴AC=CB,BC2+AC2=AB2,
    ∴∠BCA=90°,
    ∴∠ABC=45°,
    ∴∠ABC的正弦值为.
    故答案为:.
    【点睛】
    此题主要考查了锐角三角函数,以及勾股定理逆定理,关键是掌握特殊角的三角函数.
    15、3
    【解析】
    先利用勾股定理求出BD,再求出DF、BF,设AE=EF=x.在Rt△BEF中,由EB2=EF2+BF2,列出方程即可解决问题.
    【详解】
    ∵四边形ABCD是矩形,∴∠A=90°.
    ∵AB=8,AD=6,∴BD1.
    ∵△DEF是由△DEA翻折得到,∴DF=AD=6,BF=2.设AE=EF=x.在Rt△BEF中,∵EB2=EF2+BF2,∴(8﹣x)2=x2+22,解得:x=3,∴AE=3.
    故答案为:3.

    【点睛】
    本题考查了矩形的性质、勾股定理等知识,解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.
    16、
    【解析】
    利用P(A)=,进行计算概率.
    【详解】
    从0,1,2,3四个数中任取两个则|a﹣b|≤1的情况有0,0;1,1;2,2;3,3;0,1;1,0;1,2;2,1;2,3;3,2;共10种情况,甲乙出现的结果共有4×4=16,故出他们”心有灵犀”的概率为.
    故答案是:.
    【点睛】
    本题考查了概率的简单计算能力,是一道列举法求概率的问题,属于基础题,可以直接应用求概率的公式.
    17、36.
    【解析】
    试题分析:∵△AFE和△ADE关于AE对称,∴∠AFE=∠D=90°,AF=AD,EF=DE.∵tan∠EFC==,∴可设EC=3x,CF=4x,那么EF=5x,∴DE=EF=5x.∴DC=DE+CE=3x+5x=8x.∴AB=DC=8x.
    ∵∠EFC+∠AFB=90°, ∠BAF+∠AFB=90°,∴∠EFC=∠BAF.∴tan∠BAF=tan∠EFC=,∴=.∴AB=8x,∴BF=6x.∴BC=BF+CF=10x.∴AD=10x.在Rt△ADE中,由勾股定理,得AD2+DE2=AE2.∴(10x)2+(5x)2=(5)2.解得x=1.∴AB=8x=8,AD=10x=10.∴矩形ABCD的周长=8×2+10×2=36.
    考点:折叠的性质;矩形的性质;锐角三角函数;勾股定理.

    三、解答题(共7小题,满分69分)
    18、填表见解析;(1)6;(2)甲;甲的销售额的中位数较大,并且甲月销售额在9万元以上的月份多.
    【解析】
    (1)月销售额在8.0万元及以上可以获得奖金,去销售额中找到乙大于8.0的个数即可解题,
    (2)根据中位数和平均数即可解题.
    【详解】
    解:如图,
    销售额
    数量
    x
    人员
    4.0≤x≤4.9
    5.0≤x≤5.9
    6.0≤x≤6.9
    7.0≤x≤7.9
    8.0≤x≤8.9
    9.0≤x≤10.0

    1
    0
    1
    2
    1
    5

    0
    1
    3
    0
    2
    4
    (1)估计乙业务员能获得奖金的月份有6个;
    (2)可以推断出甲业务员的销售业绩好,理由为:甲的销售额的中位数较大,并且甲月销售额在9万元以上的月份多.
    故答案为0,1,3,0,2,4;6;甲,甲的销售额的中位数较大,并且甲月销售额在9万元以上的月份多.
    【点睛】
    本题考查了统计的相关知识,众数,平均数的应用,属于简单题,将图表信息转换成有用信息是解题关键.
    19、(1) ;(2)①a=1,b=-1,②m=2.
    【解析】
    (1)根据题目中的新运算法则计算即可;
    (2)①根据题意列出方程组即可求出a,b的值;
    ②先分别算出T(3m﹣3,m)与T(m,3m﹣3)的值,再根据求出的值列出等式即可得出结论.
    【详解】
    解:(1)T(4,﹣1)=
    =;
    故答案为;
    (2)①∵T(﹣2,0)=﹣2且T(2,﹣1)=1,

    解得
    ②解法一:
    ∵a=1,b=﹣1,且x+y≠0,
    ∴T(x,y)===x﹣y.
    ∴T(3m﹣3,m)=3m﹣3﹣m=2m﹣3,
    T(m,3m﹣3)=m﹣3m+3=﹣2m+3.
    ∵T(3m﹣3,m)=T(m,3m﹣3),
    ∴2m﹣3=﹣2m+3,
    解得,m=2.
    解法二:由解法①可得T(x,y)=x﹣y,
    当T(x,y)=T(y,x)时,
    x﹣y=y﹣x,
    ∴x=y.
    ∵T(3m﹣3,m)=T(m,3m﹣3),
    ∴3m﹣3=m,
    ∴m=2.
    【点睛】
    本题关键是能够把新运算转化为我们学过的知识,并应用一元一次方程或二元一次方程进行解题..
    20、见解析
    【解析】
    根据CE∥DF,可得∠ECA=∠FDB,再利用SAS证明△ACE≌△FDB,得出对应边相等即可.
    【详解】
    解:∵CE∥DF
    ∴∠ECA=∠FDB,
    在△ECA和△FDB中

    ∴△ECA≌△FDB,
    ∴AE=FB.
    【点睛】
    本题主要考查全等三角形的判定与性质和平行线的性质;熟练掌握平行线的性质,证明三角形全等是解决问题的关键.
    21、﹣2,﹣1,0
    【解析】
    分析:先解不等式①,去括号,移项,系数化为1,再解不等式②,取分母,移项,然后找出不等式组的解集.
    本题解析:

    解不等式①得,x≥−2,
    解不等式②得,x<1,
    ∴不等式组的解集为−2≤x<1.
    ∴不等式组的最大整数解为x=0,
    22、(1)-1;(2)x1=2+,x2=2﹣
    【解析】
    (1)按照实数的运算法则依次计算即可;
    (2)利用配方法解方程.
    【详解】
    (1)原式=﹣2﹣1+2×=﹣1;
    (2)x2﹣4x+2=0,
    x2﹣4x=﹣2,
    x2﹣4x+4=﹣2+4,即(x﹣2)2=2,
    ∴x﹣2=±,
    ∴x1=2+,x2=2﹣.
    【点睛】
    此题考查计算能力,(1)考查实数的计算,正确掌握绝对值的定义,零次幂的定义,特殊角度的三角函数值是解题的关键;(2)是解一元二次方程,能根据方程的特点选择适合的解法是解题的关键.
    23、)补全的条形图见解析()Ⅱ级.().
    【解析】
    试题分析:(1)根据Ⅱ级的人数和所占的百分比即可求出总数,从而求出三级人数,进而补全图形;
    (2)把所有同类数据按照从小到大的顺序排列,中间的数据是中位数,则该数在Ⅱ级.;
    (3)由样本估计总体,由于时间不低于的人数占,故该类学生约有408人.
    试题解析: (1)本次随机抽查的人数为:20÷40%=50(人).三级人数为:50-13-20-7=10.
    补图如下:

    (2)把所有同类数据按照从小到大的顺序排列,中间的数据是中位数,则该数在Ⅱ级.
    (3)由样本估计总体,由于时间不低于的人数占,所以该类学生约有.
    24、(1)2018至2020年寝室数量的年平均增长率为37.5%;(2)该校的寝室建成后最多可供1名师生住宿.
    【解析】
    (1)设2018至2020年寝室数量的年平均增长率为x,根据2018及2020年寝室数量,即可得出关于x的一元二次方程,解之取其正值即可得出结论;
    (2)设双人间有y间,则四人间有5y间,单人间有(121-6y)间,可容纳人数为w人,由单人间的数量在20至30之间(包括20和30),即可得出关于y的一元一次不等式组,解之即可得出y的取值范围,再根据可住师生数=寝室数×每间寝室可住人数,可找出w关于y的函数关系式,利用一次函数的性质即可解决最值问题.
    【详解】
    (1)解:设2018至2020年寝室数量的年平均增长率为x,
    根据题意得:64(1+x)2=121,
    解得:x1=0.375=37.5%,x2=﹣2.375(不合题意,舍去).
    答:2018至2020年寝室数量的年平均增长率为37.5%.
    (2)解:设双人间有y间,可容纳人数为w人,则四人间有5y间,单人间有(121﹣6y)间,
    ∵单人间的数量在20至30之间(包括20和30),
    ∴ ,
    解得:15 ≤y≤16 .
    根据题意得:w=2y+20y+121﹣6y=16y+121,
    ∴当y=16时,16y+121取得最大值为1.
    答:该校的寝室建成后最多可供1名师生住宿.
    【点睛】
    本题考查了一元二次方程的应用、一元一次不等式组的应用以及一次函数的性质,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量之间的关系,找出w关于y的函数关系式.

    相关试卷

    2024年浙江省宁波市鄞州区十二校中考数学模拟试卷(4月份)(含解析): 这是一份2024年浙江省宁波市鄞州区十二校中考数学模拟试卷(4月份)(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    浙江省宁波市李兴贵中学2021-2022学年中考数学模拟预测题含解析: 这是一份浙江省宁波市李兴贵中学2021-2022学年中考数学模拟预测题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,计算的结果是,已知二次函数y=3等内容,欢迎下载使用。

    浙江宁波鄞州区市级名校2021-2022学年中考数学模拟预测题含解析: 这是一份浙江宁波鄞州区市级名校2021-2022学年中考数学模拟预测题含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,某排球队名场上队员的身高等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map