|试卷下载
搜索
    上传资料 赚现金
    2022届四川省达州通川区五校联考中考数学模拟预测题含解析
    立即下载
    加入资料篮
    2022届四川省达州通川区五校联考中考数学模拟预测题含解析01
    2022届四川省达州通川区五校联考中考数学模拟预测题含解析02
    2022届四川省达州通川区五校联考中考数学模拟预测题含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届四川省达州通川区五校联考中考数学模拟预测题含解析

    展开
    这是一份2022届四川省达州通川区五校联考中考数学模拟预测题含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,已知二次函数,估计﹣2的值应该在等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(共10小题,每小题3分,共30分)
    1.研究表明某流感病毒细胞的直径约为0.00000156m,用科学记数法表示这个数是( )
    A.0.156×10-5 B.0.156×105 C.1.56×10-6 D.1.56×106
    2.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为(  )

    A.5 B.6 C.7 D.8
    3.《语文课程标准》规定:7﹣9年级学生,要求学会制订自己的阅读计划,广泛阅读各种类型的读物,课外阅读总量不少于260万字,每学年阅读两三部名著.那么260万用科学记数法可表示为(  )
    A.26×105 B.2.6×102 C.2.6×106 D.260×104
    4.《九章算术》是中国古代数学的重要著作,方程术是它的最高成就,其中记载:今有牛五、羊二,直金十两;牛二、羊五,直金八两。问:牛、羊各直金几何?译文:“假设有 5 头牛、2 只羊,值金 10 两;2 头牛、5 只羊,值金 8 两。问:每头牛、每只羊各值金多少两?” 设每头牛值金 x 两,每只羊值金 y 两,则列方程组错误的是( )
    A. B. C. D.
    5.已知二次函数(为常数),当自变量的值满足时,与其对应的函数值的最小值为4,则的值为( )
    A.1或5 B.或3 C.或1 D.或5
    6.估计﹣2的值应该在(  )
    A.﹣1﹣0之间 B.0﹣1之间 C.1﹣2之间 D.2﹣3之间
    7.设0<k<2,关于x的一次函数y=(k-2)x+2,当1≤x≤2时,y的最小值是(  )
    A.2k-2 B.k-1 C.k D.k+1
    8.PM2.5是大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为( )
    A.0.25×10﹣5 B.0.25×10﹣6 C.2.5×10﹣5 D.2.5×10﹣6
    9.若A(﹣4,y1),B(﹣3,y2),C(1,y3)为二次函数y=x2﹣4x+m的图象上的三点,则y1,y2,y3的大小关系是( )
    A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y1<y3<y2
    10.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是( )

    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.已知x、y是实数且满足x2+xy+y2﹣2=0,设M=x2﹣xy+y2,则M的取值范围是_____.
    12.分解因式:a3-12a2+36a=______.
    13.若-2amb4与5a2bn+7是同类项,则m+n= .
    14.如图,在△ABC中,AB=BC,∠ABC=110°,AB的垂直平分线DE交AC于点D,连接BD,则∠ABD= ___________°.

    15.当x=_________时,分式的值为零.
    16.某排水管的截面如图,已知截面圆半径OB=10cm,水面宽AB是16cm,则截面水深CD为_____.

    三、解答题(共8题,共72分)
    17.(8分)已知抛物线y=ax2+ c(a≠0).
    (1)若抛物线与x轴交于点B(4,0),且过点P(1,–3),求该抛物线的解析式;
    (2)若a>0,c =0,OA、OB是过抛物线顶点的两条互相垂直的直线,与抛物线分别交于A、B 两点,求证:直线AB恒经过定点(0,);
    (3)若a>0,c <0,抛物线与x轴交于A,B两点(A在B左边),顶点为C,点P在抛物线上且位于第四象限.直线PA、PB与y轴分别交于M、N两点.当点P运动时,是否为定值?若是,试求出该定值;若不是,请说明理由.
    18.(8分)如图,平行四边形ABCD的对角线AC,BD相交于点O,延长CD到E,使DE=CD,连接AE.
    (1)求证:四边形ABDE是平行四边形;
    (2)连接OE,若∠ABC=60°,且AD=DE=4,求OE的长.

    19.(8分)计算:4cos30°﹣+20180+|1﹣|
    20.(8分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过上一点E作EG∥AC交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.
    (1)求证:∠G=∠CEF;
    (2)求证:EG是⊙O的切线;
    (3)延长AB交GE的延长线于点M,若tanG =,AH=3,求EM的值.

    21.(8分)如图1,一枚质地均匀的正六面体骰子的六个面分别标有数字,,,,,,如图2,正方形的顶点处各有一个圈,跳圈游戏的规则为:游戏者每掷一次骰子,骰子朝上的那面上的数字是几,就沿正方形的边按顺时针方向连续跳几个边长。如:若从圈起跳,第一次掷得,就顺时针连续跳个边长,落在圈;若第二次掷得,就从圈开始顺时针连续跳个边长,落得圈;…设游戏者从圈起跳.
    小贤随机掷一次骰子,求落回到圈的概率.小南随机掷两次骰子,用列表法求最后落回到圈的概率,并指出他与小贤落回到圈的可能性一样吗?
    22.(10分)如图,在平面直角坐标系 中,函数的图象与直线交于点A(3,m).求k、m的值;已知点P(n,n)(n>0),过点P作平行于轴的直线,交直线y=x-2于点M,过点P作平行于y轴的直线,交函数 的图象于点N.
    ①当n=1时,判断线段PM与PN的数量关系,并说明理由;
    ②若PN≥PM,结合函数的图象,直接写出n的取值范围.

    23.(12分)某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.

    请根据以上信息解答下列问题:课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为______;请补全条形统计图;该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×=108”,请你判断这种说法是否正确,并说明理由.
    24.如图,点A、B、C、D在同一条直线上,CE∥DF,EC=BD,AC=FD,求证:AE=FB.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    解:,故选C.
    2、B
    【解析】
    试题分析:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=1.
    ∵作法可知BC=CD=4,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=4,∴BF=DF=2,∴AF=AD+DF=4+2=2.故选B.

    考点:作图—基本作图;含30度角的直角三角形.
    3、C
    【解析】
    科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.
    【详解】
    260万=2600000=.
    故选C.
    【点睛】
    此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.
    4、D
    【解析】
    由5头牛、2只羊,值金10两可得:5x+2y=10,由2头牛、5只羊,值金8两可得2x+5y=8,则7头牛、7只羊,值金18两,据此可知7x+7y=18,据此可得答案.
    【详解】
    解:设每头牛值金x两,每只羊值金y两,
    由5头牛、2只羊,值金10两可得:5x+2y=10,
    由2头牛、5只羊,值金8两可得2x+5y=8,
    则7头牛、7只羊,值金18两,据此可知7x+7y=18,
    所以方程组错误,
    故选:D.
    【点睛】
    本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意找到相等关系及等式的基本性质.
    5、D
    【解析】
    由解析式可知该函数在时取得最小值0,抛物线开口向上,当时,y随x的增大而增大;当时,y随x的增大而减小;根据时,函数的最小值为4可分如下三种情况:①若,时,y取得最小值4;②若-1<h<3时,当x=h时,y取得最小值为0,不是4;③若,当x=3时,y取得最小值4,分别列出关于h的方程求解即可.
    【详解】
    解:∵当x>h时,y随x的增大而增大,当时,y随x的增大而减小,并且抛物线开口向上,
    ∴①若,当时,y取得最小值4,
    可得:4,
    解得或(舍去);
    ②若-1<h<3时,当x=h时,y取得最小值为0,不是4,
    ∴此种情况不符合题意,舍去;
    ③若-1≤x≤3<h,当x=3时,y取得最小值4,
    可得:,
    解得:h=5或h=1(舍).
    综上所述,h的值为-3或5,
    故选:D.
    【点睛】
    本题主要考查二次函数的性质和最值,根据二次函数的性质和最值分类讨论是解题的关键.
    6、A
    【解析】
    直接利用已知无理数得出的取值范围,进而得出答案.
    【详解】
    解:∵1<<2,
    ∴1-2<﹣2<2-2,
    ∴-1<﹣2<0
    即-2在-1和0之间.
    故选A.
    【点睛】
    此题主要考查了估算无理数大小,正确得出的取值范围是解题关键.
    7、A
    【解析】
    先根据0<k<1判断出k-1的符号,进而判断出函数的增减性,根据1≤x≤1即可得出结论.
    【详解】
    ∵0<k<1,
    ∴k-1<0,
    ∴此函数是减函数,
    ∵1≤x≤1,
    ∴当x=1时,y最小=1(k-1)+1=1k-1.
    故选A.
    【点睛】
    本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0)中,当k<0,b>0时函数图象经过一、二、四象限是解答此题的关键.
    8、D
    【解析】
    根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).
    【详解】
    解: 0.0000025第一个有效数字前有6个0(含小数点前的1个0),从而.
    故选D.
    9、B
    【解析】
    根据函数解析式的特点,其对称轴为x=2,A(﹣4,y1),B(﹣3,y2),C(1,y3)在对称轴左侧,图象开口向上,利用y随x的增大而减小,可判断y3<y2<y1.
    【详解】
    抛物线y=x2﹣4x+m的对称轴为x=2,
    当x<2时,y随着x的增大而减小,
    因为-4<-3<1<2,
    所以y3<y2<y1,
    故选B.
    【点睛】
    本题考查了二次函数的性质,二次函数图象上点的坐标特征,熟练掌握二次函数的增减性是解题的关键.
    10、B
    【解析】
    观察图形,利用中心对称图形的性质解答即可.
    【详解】
    选项A,新图形不是中心对称图形,故此选项错误;
    选项B,新图形是中心对称图形,故此选项正确;
    选项C,新图形不是中心对称图形,故此选项错误;
    选项D,新图形不是中心对称图形,故此选项错误;
    故选B.
    【点睛】
    本题考查了中心对称图形的概念,熟知中心对称图形的概念是解决问题的关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、≤M≤6
    【解析】
    把原式的xy变为2xy-xy,根据完全平方公式特点化简,然后由完全平方式恒大于等于0,得到xy的范围;再把原式中的xy变为-2xy+3xy,同理得到xy的另一个范围,求出两范围的公共部分,然后利用不等式的基本性质求出2-2xy的范围,最后利用已知x2+xy+y2-2=0表示出x2+y2,代入到M中得到M=2-2xy,2-2xy的范围即为M的范围.
    【详解】
    由得:
    即 所以
    由得:
    即 所以

    ∴不等式两边同时乘以−2得:
    ,即
    两边同时加上2得:即



    则M的取值范围是≤M≤6.
    故答案为:≤M≤6.
    【点睛】
    此题考查了完全平方公式,以及不等式的基本性质,解题时技巧性比较强,对已知的式子进行了三次恒等变形,前两次利用拆项法拼凑完全平方式,最后一次变形后整体代入确定出M关于xy的式子,从而求出M的范围.要求学生熟练掌握完全平方公式的结构特点:两数的平方和加上或减去它们乘积的2倍等于两数和或差的平方.
    12、a(a-6)2
    【解析】
    原式提取a,再利用完全平方公式分解即可.
    【详解】
    原式=a(a2-12a+36)=a(a-6)2,
    故答案为a(a-6)2
    【点睛】
    本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键.
    13、-1.
    【解析】
    试题分析:根据同类项是字母相同且相同字母的指数也相同,可得方程组,根据解方程组,可得m、n的值,根据有理数的加法,可得答案.
    试题解析:由-2amb4与5a2bn+7是同类项,得

    解得.
    ∴m+n=-1.
    考点:同类项.
    14、1
    【解析】
    ∵在△ABC中,AB=BC,∠ABC=110°, 
    ∴∠A=∠C=1°, 
    ∵AB的垂直平分线DE交AC于点D, 
    ∴AD=BD, 
    ∴∠ABD=∠A=1°;
    故答案是1.
    15、2
    【解析】
    根据若分式的值为零,需同时具备两个条件:(1)分子为1;(2)分母不为1计算
    即可.
    【详解】
    解:依题意得:2﹣x=1且2x+2≠1.
    解得x=2,
    故答案为2.
    【点睛】
    本题考查的是分式为1的条件和一元二次方程的解法,掌握若分式的值为零,需同时具备两个条件:(1)分子为1;(2)分母不为1是解题的关键.
    16、4cm.
    【解析】
    由题意知OD⊥AB,交AB于点C,由垂径定理可得出BC的长,在Rt△OBC中,根据勾股定理求出OC的长,由CD=OD-OC即可得出结论.
    【详解】
    由题意知OD⊥AB,交AB于点E,
    ∵AB=16cm,
    ∴BC=AB=×16=8cm,
    在Rt△OBE中,
    ∵OB=10cm,BC=8cm,
    ∴OC=(cm),
    ∴CD=OD-OC=10-6=4(cm)
    故答案为4cm.
    【点睛】
    本题考查的是垂径定理的应用,根据题意在直角三角形运用勾股定理列出方程是解答此题的关键.

    三、解答题(共8题,共72分)
    17、(1);(2)详见解析;(3)为定值,=
    【解析】
    (1)把点B(4,0),点P(1,–3)代入y=ax2+ c(a≠0),用待定系数法求解即可;
    (2)如图作辅助线AE、BF垂直 x轴,设A(m,am2)、B(n,an2),由△AOE∽△OBF,可得到,然后表示出直线AB的解析式即可得到结论;
    (3)作PQ⊥AB于点Q,设P(m,am2+c)、A(–t,0)、B(t,0),则at2+c=0, c= –at2
    由PQ∥ON,可得ON=amt+at2,OM= –amt+at2,然后把ON,OM,OC的值代入整理即可.
    【详解】
    (1)把点B(4,0),点P(1,–3)代入y=ax2+ c(a≠0),

    解之得

    ∴;
    (2)如图作辅助线AE、BF垂直 x轴,设A(m,am2)、B(n,an2),

    ∵OA⊥OB,
    ∴∠AOE=∠OBF,
    ∴△AOE∽△OBF,
    ∴,,,
    直线AB过点A(m,am2)、点B(n,an2),
    ∴过点(0,);
    (3)作PQ⊥AB于点Q,设P(m,am2+c)、A(–t,0)、B(t,0),则at2+c=0, c= –at2
    ∵PQ∥ON,

    ∴,
    ON=====at(m+t)= amt+at2,
    同理:OM= –amt+at2,
    所以,OM+ON= 2at2=–2c=OC,
    所以,=.
    【点睛】
    本题考查了待定系数法求函数解析式,相似三角形的判定与性质,平行线分线段成比例定理.正确作出辅助线是解答本题的关键.
    18、 (1)见解析;(2)2.
    【解析】
    (1)四边形ABCD是平行四边形,由平行四边形的性质,可得AB=DE, AB//DE ,则四边形ABDE是平行四边形;
    (2)因为AD=DE=1,则AD=AB=1,四边形ABCD是菱形,由菱形的性质及解直角三角形可得AO=AB⋅sin∠ABO=2,BO=AB⋅cos∠ABO=2, BD=1 ,则AE=BD,利用勾股定理可得OE.
    【详解】
    (1)证明:∵四边形ABCD是平行四边形,
    ∴AB∥CD,AB=CD.
    ∵DE=CD,
    ∴AB=DE.
    ∴四边形ABDE是平行四边形;
    (2)∵AD=DE=1,
    ∴AD=AB=1.
    ∴▱ABCD是菱形,
    ∴AB=BC,AC⊥BD,,.
    又∵∠ABC=60°,
    ∴∠ABO=30°.
    在Rt△ABO中,,.
    ∴.
    ∵四边形ABDE是平行四边形,
    ∴AE∥BD,.
    又∵AC⊥BD,
    ∴AC⊥AE.
    在Rt△AOE中,.
    【点睛】
    此题考查平行四边形的性质及判断,考查菱形的判断及性质,及解直角三角形,解题关键在于掌握判定定理和利用三角函数进行计算.
    19、
    【解析】
    先代入三角函数值、化简二次根式、计算零指数幂、取绝对值符号,再计算乘法,最后计算加减可得.
    【详解】
    原式=
    =
    =
    【点睛】
    本题主要考查实数的混合运算,解题的关键是熟练掌握实数的混合运算顺序和运算法则及零指数幂、绝对值和二次根式的性质.
    20、(1)证明见解析;(2)证明见解析;(3).
    【解析】
    试题分析:(1)由AC∥EG,推出∠G=∠ACG,由AB⊥CD推出,推出∠CEF=∠ACD,推出∠G=∠CEF,由此即可证明;
    (2)欲证明EG是⊙O的切线只要证明EG⊥OE即可;
    (3)连接OC.设⊙O的半径为r.在Rt△OCH中,利用勾股定理求出r,证明△AHC∽△MEO,可得,由此即可解决问题;
    试题解析:(1)证明:如图1.∵AC∥EG,∴∠G=∠ACG,∵AB⊥CD,∴,∴∠CEF=∠ACD,∴∠G=∠CEF,∵∠ECF=∠ECG,∴△ECF∽△GCE.

    (2)证明:如图2中,连接OE.∵GF=GE,∴∠GFE=∠GEF=∠AFH,∵OA=OE,∴∠OAE=∠OEA,∵∠AFH+∠FAH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切线.

    (3)解:如图3中,连接OC.设⊙O的半径为r.

    在Rt△AHC中,tan∠ACH=tan∠G==,∵AH=,∴HC=,在Rt△HOC中,∵OC=r,OH=r﹣,HC=,∴,∴r=,∵GM∥AC,∴∠CAH=∠M,∵∠OEM=∠AHC,∴△AHC∽△MEO,∴,∴,∴EM=.
    点睛:本题考查圆综合题、垂径定理、相似三角形的判定和性质、锐角三角函数、勾股定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,正确寻找相似三角形,构建方程解决问题吗,属于中考压轴题.
    21、(1)落回到圈的概率;(2)可能性不一样.
    【解析】
    (1)由共有6种等可能的结果,落回到圈A的只有1种情况,直接利用概率公式求解即可求得答案;
    (2)首先根据题意列出表格,然后由表格求得所有等可能的结果与最后落回到圈A的情况,再利用概率公式求解即可求得答案.
    【详解】
    (1)掷一次骰子有种等可能的结果,只有掷的时,才会落回到圈,
    落回到圈的概率;
    (2)列表得:

    1
    2
    3
    4
    5
    6
    1






    2






    3






    4






    5






    6






    共有种等可能的结果,当两次掷得的数字之和为的倍数,即时,才可能落回到圈,这种情况共有种,
    ∴,
    ∵,
    可能性不一样
    【点睛】
    本题考查了用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.
    22、 (1) k的值为3,m的值为1;(2)0 【解析】
    分析:(1)将A点代入y=x-2中即可求出m的值,然后将A的坐标代入反比例函数中即可求出k的值.
    (2)①当n=1时,分别求出M、N两点的坐标即可求出PM与PN的关系;
    ②由题意可知:P的坐标为(n,n),由于PN≥PM,从而可知PN≥2,根据图象可求出n的范围.
    详解:(1)将A(3,m)代入y=x-2,
    ∴m=3-2=1,
    ∴A(3,1),
    将A(3,1)代入y=,
    ∴k=3×1=3,
    m的值为1.
    (2)①当n=1时,P(1,1),
    令y=1,代入y=x-2,
    x-2=1,
    ∴x=3,
    ∴M(3,1),
    ∴PM=2,
    令x=1代入y=,
    ∴y=3,
    ∴N(1,3),
    ∴PN=2
    ∴PM=PN,
    ②P(n,n),
    点P在直线y=x上,
    过点P作平行于x轴的直线,交直线y=x-2于点M,

    M(n+2,n),
    ∴PM=2,
    ∵PN≥PM,
    即PN≥2,
    ∴0<n≤1或n≥3
    点睛:本题考查反比例函数与一次函数的综合问题,解题的关键是求出反比例函数与一次函数的解析式,本题属于基础题型.
    23、(1)144°;(2)补图见解析;(3)160人;(4)这个说法不正确,理由见解析.
    【解析】
    试题分析:(1)360°×(1﹣15%﹣45%)=360°×40%=144°;故答案为144°;
    (2)“经常参加”的人数为:300×40%=120人,喜欢篮球的学生人数为:120﹣27﹣33﹣20=120﹣80=40人;补全统计图如图所示;

    (3)全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约为:1200×=160人;
    (4)这个说法不正确.理由如下:小明得到的108人是经常参加课外体育锻炼的男生中最喜欢的项目是乒乓球的人数,而全校偶尔参加课外体育锻炼的男生中也会有最喜欢乒乓球的,因此应多于108人.
    考点:①条形统计图;②扇形统计图.
    24、见解析
    【解析】
    根据CE∥DF,可得∠ECA=∠FDB,再利用SAS证明△ACE≌△FDB,得出对应边相等即可.
    【详解】
    解:∵CE∥DF
    ∴∠ECA=∠FDB,
    在△ECA和△FDB中

    ∴△ECA≌△FDB,
    ∴AE=FB.
    【点睛】
    本题主要考查全等三角形的判定与性质和平行线的性质;熟练掌握平行线的性质,证明三角形全等是解决问题的关键.

    相关试卷

    2022年浙江省江北区七校联考中考数学模拟预测题含解析: 这是一份2022年浙江省江北区七校联考中考数学模拟预测题含解析,共23页。试卷主要包含了已知关于x的一元二次方程等内容,欢迎下载使用。

    2022年浙江省宁波城区五校联考中考数学模拟预测题含解析: 这是一份2022年浙江省宁波城区五校联考中考数学模拟预测题含解析,共20页。试卷主要包含了已知下列命题等内容,欢迎下载使用。

    2022届辽宁省沈阳市五校中考数学模拟预测题含解析: 这是一份2022届辽宁省沈阳市五校中考数学模拟预测题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,某校40名学生参加科普知识竞赛,下列说法正确的是,下列计算正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map