年终活动
搜索
    上传资料 赚现金

    【最新版】高中数学(新人教A版)教案+同步课件第二课时 共线向量与共面向量

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 课件
      第二课时 共线向量与共面向量.pptx
    • 第二课时 共线向量与共面向量.DOCX
    第二课时 共线向量与共面向量第1页
    第二课时 共线向量与共面向量第2页
    第二课时 共线向量与共面向量第3页
    第二课时 共线向量与共面向量第4页
    第二课时 共线向量与共面向量第5页
    第二课时 共线向量与共面向量第6页
    第二课时 共线向量与共面向量第7页
    第二课时 共线向量与共面向量第8页
    当前文件暂不支持在线预览,请下载使用
    还剩43页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020-2021学年1.4 空间向量的应用课文内容ppt课件

    展开

    这是一份2020-2021学年1.4 空间向量的应用课文内容ppt课件,文件包含第二课时共线向量与共面向量pptx、第二课时共线向量与共面向量DOCX等2份课件配套教学资源,其中PPT共51页, 欢迎下载使用。
    1.理解向量共线、向量共面的定义.2.掌握向量共线的充要条件和向量共面的充要条件,会证明空间三点共线、四点共面.
    在理解向量共线、向量共面概念的过程中,提升学生数学抽象素养,在判定与证明向量共线、共面的过程中,发展学生逻辑推理、直观想象和数学运算素养.
    问题导学预习教材必备知识探究
    互动合作研析题型关键能力提升
    拓展延伸分层精练核心素养达成
    WEN TI DAO XUE YU XI JIAO CAI BI BEI ZHI SHI TAN JIU
    问题导学预习教材 必备知识探究
    一、空间向量共线的充要条件
    1.思考 平面向量共线的充要条件是什么?它适用于空间向量吗?
    提示 对任意两个平面向量a,b(b≠0),a∥b的充要条件是存在实数λ,使a=λb,由于空间向量共线的定义与平面向量相同,因此也适用于空间向量.
    2.填空 (1)空间向量共线的充要条件:对任意两个空间向量a,b(b≠0),a∥b的充要条件是存在实数λ,使__________.
    ②直线可以由其上一点和它的方向向量表示.
    温馨提醒 (1)向量a,b共线时,表示向量a,b的有向线段不一定在同一条直线上.(2)因为零向量0=0·a,所以零向量和空间任一向量a是共线(平行)向量,这一性质使共线向量不具有传递性,即若a∥b,b∥c,则a∥c不一定成立.因为当b=0时,a∥0,0∥c,但a与c不一定共线.
    即9a+mb=λ(-3a+b).
    二、空间向量共面的充要条件
    1.思考 空间任意两个向量是共面向量,则空间任意三个向量是否共面?
    温馨提醒 向量p与a,b共面的充要条件是在向量a与b不共线的前提下才成立的,若a与b共线,则不成立.
    3.做一做 在下列条件中,使点M与点A,B,C一定共面的是(  )
    HU DONG HE ZUO YAN XI TI XING GUAN JIAN MENG LI TI SHENG
    互动合作研析题型 关键能力提升
    解 法一 ∵M,N分别是AC,BF的中点,且四边形ABCD和ABEF都是平行四边形,
    角度1 共线向量的证明
    判定向量共线就是充分利用已知条件找到实数λ,使a=λb成立,或充分利用空间向量的运算法则,结合具体图形通过化简,计算得出a=λb,从而得到a∥b.
    证明 ∵E,H分别是AB,AD的中点,
    又F不在直线EH上,∴四边形EFGH是梯形.
    例2 在正方体ABCD-A1B1C1D1中,G为△BC1D的重心,证明:A1,G,C三点共线.证明 连接GB,GD,GC1,
    角度2 三点共线的证明
    角度1 向量共面的证明
    例4 (链接教材P5例1)如图所示,在长方体ABCD-A1B1C1D1中,M为DD1的中点,N∈AC,且AN∶NC=2∶1,求证:A1,B,N,M四点共面.
    角度2 四点共面的证明
    又∵三向量有相同的起点A1,∴A1,B,N,M四点共面.
    即存在实数x=-4,y=2,
    1.重要思想与方法(1)应用向量共线的充要条件可解决三点共线问题,利用向量共面的充要条件可证明四点共面、线面平行等.(2)本节应用的数学思想为类比,转化与化归.2.易错易混点提醒(1)混淆向量共线与线段共线、点共线.(2)证明线面平行时混淆“线面平行”与“向量共线”.
    TUO ZHAN YAN SHEN FEN CENG JING LIAN HE XING SU YANG DA CHENG
    拓展延伸分层精练 核心素养达成
    1.对于空间的任意三个向量a,b,2a-b,它们一定是(  )A.共面向量   B.共线向量C.不共面向量   D.既不共线也不共面的向量
    解析 由向量共面定理可知,三个向量a,b,2a-b为共面向量.
    ∴A,B,D三点共线.
    解析 因为m+n=1,所以m=1-n,
    4.(多选)在以下命题中,不正确的命题是(   )
    又A,B,D三点共线,
    9.已知A,B,M三点不共线,对于平面ABM外的任意一点O,确定在下列条件下,点P是否与A,B,M一定共面.
    10.如图,已知M,N分别为四面体ABCD中△BCD与△ACD的重心,G为AM上一点,且GM∶GA=1∶3.
    求证:B,G,N三点共线.
    因为11+(-6)+(-4)=1,于是M,B,A1,D1四点共面.
    12.已知i,j,k是不共面向量,a=2i-j+3k,b=-i+4j-2k,c=7i+5j+λk,若a,b,c三个向量共面,则实数λ=________.
    解析 ∵a,b,c三向量共面,∴存在实数m,n,使得c=ma+nb,即7i+5j+λk=m(2i-j+3k)+n(-i+4j-2k).
    解析 ∵A,B,C三点共线,

    相关课件

    人教A版 (2019)选择性必修 第一册1.1 空间向量及其运算教课内容课件ppt:

    这是一份人教A版 (2019)选择性必修 第一册1.1 空间向量及其运算教课内容课件ppt,文件包含111第2课时共线向量与共面向量pptx、111第2课时共线向量与共面向量docx等2份课件配套教学资源,其中PPT共60页, 欢迎下载使用。

    人教B版 (2019)选择性必修 第一册第一章 空间向量与立体几何1.2 空间向量在立体几何中的应用1.2.1 空间中的点、直线与空间向量说课课件ppt:

    这是一份人教B版 (2019)选择性必修 第一册第一章 空间向量与立体几何1.2 空间向量在立体几何中的应用1.2.1 空间中的点、直线与空间向量说课课件ppt,文件包含第二课时直线的方向向量与法向量pptx、第二课时直线的方向向量与法向量DOCX等2份课件配套教学资源,其中PPT共45页, 欢迎下载使用。

    数学选择性必修 第一册1.3 空间向量及其运算的坐标表示图片ppt课件:

    这是一份数学选择性必修 第一册1.3 空间向量及其运算的坐标表示图片ppt课件,文件包含132空间向量运算的坐标表示pptx、132空间向量运算的坐标表示DOCX等2份课件配套教学资源,其中PPT共60页, 欢迎下载使用。

    文档详情页底部广告位
    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map