初中数学沪科版七年级上册第3章 一次方程与方程组3.1 一元一次方程及其解法备课ppt课件
展开
这是一份初中数学沪科版七年级上册第3章 一次方程与方程组3.1 一元一次方程及其解法备课ppt课件,共15页。PPT课件主要包含了有几个未知数,x-12,等式的基本性质,x21+5,3x-2x=1,你发了什么,移项时应注意什么等内容,欢迎下载使用。
1.理解一元一次方程、方程的解的概念.2.掌握等式的基本性质.3.掌握一元一次方程的解法.
下面的两个方程有什么共同点? 2x-5=21 36+x=2(12+x)
3.未知数的次数有什么共同点?
未知数的次数相同,并且都是1.
只含有一个未知数(元),未知数的次数都是1,且等式两边都是整式的方程叫做一元一次方程.
1 .方程两边都是_____式.
⒈判断下列各等式哪些是一元一次方程?
⒉你能写出一个一元一次方程吗?
(1)5x=0;(2)y2=4+y;(3)3m+2=1-m;(4) ;(5)xy=1.
x=1是这个方程的解吗?你是怎么判断的?
(1)(3)是一元一次方程.
使方程左右两边相等的未知数的值叫做方程的解;一元方程的解,也可叫做方程的根.根据等式的性质求得方程解的过程叫做解方程.
性质1 等式的两边都加上(或减去)同一个数或同一个整式, 所得结果仍是等式. 即
如果a=b,那么a±c=b±c.
性质2 等式的两边都乘以(或除以)同一 个数(除 数不能为0), 所得结果仍是等式. 即
例1(1) 2x - 5 = 21 . (2) 3x=2x +1.
解:两边都加上5,得 2x-5+5=21+ 5,
解:两边都减去2x,得 3x-2x=2x+1-2x,
x=1.检验:把x=1代入原方程的两边,得左边=3×1=3,右边=2×1+1=3,左边=右边,所以x=1是原方程的解.
把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫做移项.
移项应注意:移项要变号
例2 解方程:3x+5=5x-7.
解法2:移项,得5+7=5x-3x.合并同类项,得 12=2x.两边同除以2,得 6=x.即 x=6.
1.下面的移项对不对?如果不对,错在哪里?应当怎样改正?(1)从9 + x = 7,得 x = 7 + 9;(2)从5x = 7-4x,得 5x-4x =7;(3)从2y-1=3y +6,得2y-3y=6-1; (4) 从-6x-7=-7x+1 ,得 7x-6x=1+7.
错,应该得 x=7-9.
错,应该得5x+4x=7.
错,应该得2y-3y=6+1.
2.解下列方程:(1)2x=x+5 ; (2)5x+21=7-2x;
解:移项,得 2x-x=5. 合并同类项,得 x=5.
解: 移项,得 5x+2x=7-21. 合并同类项,得 7x=-14. 两边同除以7,得 x=-2 .
(3) ; (4)11x+1=5(2x+1).
解:去括号,得 11x+1=10x+5.
移项,得11x-10x=5-1.
合并同类项,得 x=4.
例3 解方程:2(x-2)-3(4x-1)=9(1-x).
解:去括号,得 2x-4-12x+3=9-9x.移项,得 2x-12x+9x=9+4-3.合并同类项,得 -x=10.两边同除以-1,得 x=-10.
注意:去括号时,不要漏乘括号中的项,并且要注意符号,括号前面是负号,括号内各项要注意变号.
例4 解方程:
相关课件
这是一份沪科版七年级上册3.1 一元一次方程及其解法课文课件ppt,共9页。PPT课件主要包含了知识回顾,新知构建,练习口答,例题讲解等内容,欢迎下载使用。
这是一份初中数学沪科版七年级上册3.1 一元一次方程及其解法课文内容ppt课件,共17页。PPT课件主要包含了创设情境引入新知,自主预习,火眼金睛,1方程为,去分母得,2方程为,典型例析,说一说,想一想,练一练等内容,欢迎下载使用。
这是一份初中数学沪科版七年级上册3.1 一元一次方程及其解法教学课件ppt,共13页。PPT课件主要包含了学习目标,解方程5x-2=8,x=8+2,5x=10,x-2x=1,合并同类项得x=1,能力再现,x-2x1,x-2=8,探究新知等内容,欢迎下载使用。