初中数学人教版八年级上册13.4课题学习 最短路径问题优秀同步训练题
展开人教版 八年级上册 第13章 13.4最短路径 同步强化测试卷
一.选择题:
1.如图,△ABC是等边三角形,AD是BC边上的高,E是AC的中点,P是AD上的一个动点,当PC与PE的和最小时,∠ACP的度数是( )
A.30° B.45° C.60° D.90°
2.在如图所示的平面直角坐标系中,点A的坐标为(4,2),点B的坐标为(1,-3),在y轴上有一点P,使PA+PB的值最小,则点P的坐标为( )
A.(2,0) B.(-2,0) C.(0,2) D.(0,-2)
3.如图,∠AOB=30°,∠AOB内有一定点P,且OP=10.在OA上有一点Q,OB上有一点R.若△PQR周长最小,则最小周长是( )
A.10 B.15 C.20 D.30
4.如图,是正方形的一条对称轴,点是直线的上的一个动点,当最小时,( )
A. B. C. D.
5.如图,正三角形ABC的边长为2,过点B的直线l⊥AB,且△ABC与△A′BC′关于直线l对称,D为线段BC′上一动点,则AD+CD的最小值是( )
A.4 B.5 C.6 D.7
6.如图,在△ABC中,AB=AC,BC=10,S△ABC=60,AD⊥BC于点D,EF垂直平分AB,交AB于点E,AC于点F,在EF上确定一点P,使PB+PD最小,则这个最小值为( )
A.10 B.11
C.12 D.13
二.填空题
7.如图,在△ABC中,AB=3cm,AC=5cm,AB⊥AC,EF垂直平分BC,点P为直线EF上一动点则△ABP周长的最小值是_____.
8.如图,等腰△ABC底边BC的长为6cm,面积是24cm2,腰AB的垂直平分线MN交AB于点M,交AC于点N,若D为BC边上的中点,E为线段MN上一动点,则△BDE的周长最小值为____cm.
9.如图,在锐角三角形ABC中,AB=10,S△ABC=30,∠ABC的平分线BD交AC于点D,点M、N分别是BD和BC上的动点,则CM+MN的最小值是_____.
10.如图,在平面直角坐标系中,有点A(1,3),B(2,1),在x轴和y轴上分别找Q,P两点,使得四边形ABQP的周长最短,最短周长为 .
11.如图,△ABE是等边三角形,M是正方形ABCD对角线BD(不含B点)上任意一点,BM=BN,∠ABN=15°(点N在AB的左侧),当AM+BM+CM的最小值为+1时,正方形的边长为 .
12.如图,在平面直角坐标系xOy中,点A的坐标为(0,6),点B为x轴上一动点,以AB为边在直线AB的右侧作等边三角形ABC.若点P为OA的中点,连接PC,则PC的长的最小值为_____.
三.解答题:
13.如图,在旷野上,一个人骑着马从A地到B地,半路上他必须让马先到河岸l的P点去饮水,然后再让马到河岸m的Q点再次饮水,最后到达B点,他应该如何选择马饮水地点P、Q,才能使所走路程最短?(假设岸l、m为直线)
14.如图1和图2,是直线上一动点,两点在直线的同侧,且点所在直线与不平行.
(1)当点运动到位置时,距离点最近,在图1中的直线上画出点的位置;
(2)当点运动到位置时,与点的距离和与点距两相等,请在图2中作出位置;
(3)在直线上是否存在这样一点,使得到点的距离与到点的距离之和最小?若存在请在图3中作出这点,若不存在清说明理由.
(要求:不写作法,请保留作图痕迹)
15.如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线交BC于点D,垂足为E,AD平分∠BAC.
(1)求∠B的度数;
(2)求证:CD=BC;
(3)若AC=2,点P是直线AD上的动点,求|PB﹣PC|的最大值.
16.如图,在Rt△AOC中,∠A=30°,点O(0,0),C(1,0),点A在y轴正半轴上,以AC为一边作等腰直角△ACP,使得点P在第一象限.
(1)求出所有符合题意的点P的坐标;
(2)在△AOC内部存在一点Q,使得AQ、OQ、CQ之和最小,请求出这个和的最小值.
17.如图,C为线段BD上的一个动点,分别过点B,D作AB⊥BD,ED⊥BD,连接AC,EC.已知AB=5,DE=1,BD=8,设CD=x.
(1)用含x的代数式表示AC+CE的长;
(2)请问:点C满足什么条件时,AC+CE的值最小?求出这个最小值.
(3)根据(2)中的规律和结论,请构图求出代数式的最小值.
初中数学人教版八年级上册13.4课题学习 最短路径问题当堂检测题: 这是一份初中数学人教版八年级上册13.4课题学习 最短路径问题当堂检测题,共12页。
初中数学人教版八年级上册13.4课题学习 最短路径问题精品课后作业题: 这是一份初中数学人教版八年级上册13.4课题学习 最短路径问题精品课后作业题,文件包含答案docx、原卷docx等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。
初中数学13.4课题学习 最短路径问题精品课后作业题: 这是一份初中数学13.4课题学习 最短路径问题精品课后作业题,共13页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。