所属成套资源:多地区中考数学真题按题型知识点分层分类汇编
内蒙古赤峰市三年(2020-2022)中考数学真题分类汇编-02填空题
展开
这是一份内蒙古赤峰市三年(2020-2022)中考数学真题分类汇编-02填空题,共14页。试卷主要包含了一个电子跳蚤在数轴上做跳跃运动,分解因式等内容,欢迎下载使用。
内蒙古赤峰市三年(2020-2022)中考数学真题分类汇编-02填空题一.规律型:图形的变化类(共1小题)1.(2020•赤峰)一个电子跳蚤在数轴上做跳跃运动.第一次从原点O起跳,落点为A1,点A1表示的数为1;第二次从点A1起跳,落点为OA1的中点A2,第三次从A2点起跳,落点为OA2的中点A3;如此跳跃下去…最后落点为OA2019的中点A2020,则点A2020表示的数为 .二.提公因式法与公式法的综合运用(共1小题)2.(2022•赤峰)分解因式:2x3+4x2+2x= .三.函数自变量的取值范围(共1小题)3.(2021•赤峰)在函数y=中,自变量x的取值范围是 .四.函数的图象(共1小题)4.(2022•赤峰)已知王强家、体育场、学校在同一直线上,下面的图象反映的过程是:某天早晨,王强从家跑步去体育场锻炼,锻炼结束后,步行回家吃早餐,饭后骑自行车到学校.图中x表示时间,y表示王强离家的距离.则下列结论正确的是 .(填写所有正确结论的序号)①体育场离王强家2.5km②王强在体育场锻炼了30min③王强吃早餐用了20min①王强骑自行车的平均速度是0.2km/min五.抛物线与x轴的交点(共1小题)5.(2022•赤峰)如图,抛物线y=﹣x2﹣6x﹣5交x轴于A、B两点,交y轴于点C,点D(m,m+1)是抛物线上的点,则点D关于直线AC的对称点的坐标为 .六.多边形内角与外角(共1小题)6.(2020•赤峰)一个正n边形的内角和是它外角和的4倍,则n= .七.正方形的性质(共1小题)7.(2021•赤峰)如图,正方形ABCD的边长为2,点E是BC的中点,连接AE与对角线BD交于点G,连接CG并延长,交AB于点F,连接DE交CF于点H,连接AH.以下结论:①CF⊥DE;②=;③GH=;④AD=AH,其中正确结论的序号是 .八.正多边形和圆(共1小题)8.(2021•赤峰)如图,在拧开一个边长为a的正六角形螺帽时,扳手张开的开口b=20mm,则边长a= mm.九.解直角三角形的应用-仰角俯角问题(共3小题)9.(2022•赤峰)如图,为了测量校园内旗杆AB的高度,九年级数学应用实践小组,根据光的反射定律,利用镜子、皮尺和测角仪等工具,按以下方式进行测量:把镜子放在点O处,然后观测者沿着水平直线BO后退到点D,这时恰好能在镜子里看到旗杆顶点A,此时测得观测者观看镜子的俯角α=60°,观测者眼睛与地面距离CD=1.7m,BD=11m,则旗杆AB的高度约为 m.(结果取整数,≈1.7)10.(2021•赤峰)某滑雪场用无人机测量雪道长度.如图,通过无人机的镜头C测一段水平雪道一端A处的俯角为50°,另一端B处的俯角为45°,若无人机镜头C处的高度CD为238米,点A,D,B在同一直线上,则雪道AB的长度为 米.(结果保留整数,参考数据sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)11.(2020•赤峰)如图,航拍无人机从A处测得一幢建筑物顶部C的仰角是30°,测得底部B的俯角是60°,此时无人机与该建筑物的水平距离AD是9米,那么该建筑物的高度BC为 米(结果保留根号).一十.频数(率)分布表(共1小题)12.(2020•赤峰)某校为了解七年级学生的身体素质情况,从七年级各班随机抽取了数量相同的男生和女生,组成一个容量为60的样本,进行各项体育项目的测试.下表是通过整理样本数据,得到的关于每个个体测试成绩的部分统计表:某校60名学生体育测试成绩频数分布表成绩划记频数百分比优秀a30%良好30b合格915%不合格35%合计6060100%如果该校七年级共有300名学生,根据以上数据,估计该校七年级学生身体素质良好及以上的人数为 人.
参考答案与试题解析一.规律型:图形的变化类(共1小题)1.(2020•赤峰)一个电子跳蚤在数轴上做跳跃运动.第一次从原点O起跳,落点为A1,点A1表示的数为1;第二次从点A1起跳,落点为OA1的中点A2,第三次从A2点起跳,落点为OA2的中点A3;如此跳跃下去…最后落点为OA2019的中点A2020,则点A2020表示的数为 .【解答】解:第一次落点为A1处,点A1表示的数为1;第二次落点为OA1的中点A2,点A2表示的数为;第三次落点为OA2的中点A3,点A3表示的数为()2;…则点A2020表示的数为()2019,即点A2020表示的数为;故答案为:.二.提公因式法与公式法的综合运用(共1小题)2.(2022•赤峰)分解因式:2x3+4x2+2x= 2x(x+1)2 .【解答】解:原式=2x(x2+2x+1)=2x(x+1)2.故答案为:2x(x+1)2.三.函数自变量的取值范围(共1小题)3.(2021•赤峰)在函数y=中,自变量x的取值范围是 x≥﹣1且x≠ .【解答】解:根据题意得:,解得:x≥﹣1且x≠.故答案为:x≥﹣1且x≠.四.函数的图象(共1小题)4.(2022•赤峰)已知王强家、体育场、学校在同一直线上,下面的图象反映的过程是:某天早晨,王强从家跑步去体育场锻炼,锻炼结束后,步行回家吃早餐,饭后骑自行车到学校.图中x表示时间,y表示王强离家的距离.则下列结论正确的是 ①③④ .(填写所有正确结论的序号)①体育场离王强家2.5km②王强在体育场锻炼了30min③王强吃早餐用了20min①王强骑自行车的平均速度是0.2km/min【解答】解:由图象中的折线中的第一段可知:王强家距离体育场2.5千米,用时15分钟跑步到达,∴①的结论正确;由图象中的折线中的第二段可知:王强从第15分钟开始锻炼,第30分钟结束,∴王强锻炼的时间为:30﹣15=15(分钟),∴②的结论不正确;由图象中的折线中的第三段可知:王强从第30中开始回家,第67分钟到家;由图象中的折线中的第四段可知:王强从第67分钟开始吃早餐,第87分钟结束,∴王强吃早餐用时:87﹣67=20(分钟),∴③的结论正确;由图象中的折线中的第五段可知:王强从第87分钟开始骑车去往3千米外的学校,第102分钟到达学校,∴王强骑自行车用时为:102﹣87=15(分钟),∴王强骑自行车的平均速度是:3÷15=0.2(km/min)∴④的结论正确.综上,结论正确的有:①③④,故答案为:①③④.五.抛物线与x轴的交点(共1小题)5.(2022•赤峰)如图,抛物线y=﹣x2﹣6x﹣5交x轴于A、B两点,交y轴于点C,点D(m,m+1)是抛物线上的点,则点D关于直线AC的对称点的坐标为 (﹣5,﹣4)或(0,1) .【解答】解:把点D(m,m+1)代入抛物线y=﹣x2﹣6x﹣5中得:m+1=﹣m2﹣6m﹣5,解得:m1=﹣1,m2=﹣6,∴D(﹣1,0)或(﹣6,﹣5),当y=0时,﹣x2﹣6x﹣5=0,∴x=﹣1或﹣5,∴A(﹣5,0),B(﹣1,0),当x=0时,y=﹣5,∴OC=OA=5,∴△AOC是等腰直角三角形,∴∠OAC=45°,①如图1,D(﹣1,0),此时点D与B重合,连接AD',∵点D与D'关于直线AC对称,∴AC是BD的垂直平分线,∴AB=AD'=﹣1﹣(﹣5)=4,且∠OAC=∠CAD'=45°,∴∠OAD'=90°,∴D'(﹣5,﹣4);②如图2,D(﹣6,﹣5),∵点D(m,m+1),∴点D在直线y=x+1上,此时直线y=x+1过点B,∴BD⊥AC,即D'在直线y=x+1上,∵A(﹣5,0),C(0,﹣5),则直线AC的解析式为:y=﹣x﹣5,∵﹣x﹣5=x+1,∴x=﹣3,∴E(﹣3,﹣2),∵点D与D'关于直线AC对称,∴E是DD'的中点,∴D'(0,1),综上,点D关于直线AC的对称点的坐标为(﹣5,﹣4)或(0,1).故答案为:(﹣5,﹣4)或(0,1).六.多边形内角与外角(共1小题)6.(2020•赤峰)一个正n边形的内角和是它外角和的4倍,则n= 10 .【解答】解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=360°×4,解得n=10.故答案为:10.七.正方形的性质(共1小题)7.(2021•赤峰)如图,正方形ABCD的边长为2,点E是BC的中点,连接AE与对角线BD交于点G,连接CG并延长,交AB于点F,连接DE交CF于点H,连接AH.以下结论:①CF⊥DE;②=;③GH=;④AD=AH,其中正确结论的序号是 ①②④ .【解答】解:∵四边形ABCD是边长为2的正方形,点E是BC的中点,∴AB=AD=BC=CD=2,BE=CE=,∠DCE=∠ABE=90°,∠ABD=∠CBD=45°,∴△ABE≌△DCE(SAS),∴∠CDE=∠BAE,DE=AE,∵AB=BC,∠ABG=∠CBG,BG=BG,∴△ABG≌△CBG(SAS),∴∠BAE=∠BCF,∴∠BCF=∠CDE,又∵∠CDE+∠CED=90°,∴∠BCF+∠CED=90°,∴∠CHE=90°,∴CF⊥DE,故①正确;∵CD=2,CE=,由勾股定理得,DE===5,∵S△DCE=CD×CE=DE×CH,∴CH=2,∵∠CHE=∠CBF,∠BCF=∠ECH,∴△ECH∽△FCB,∴=,∴=,∴CF=5,∴HF=CF﹣CH=3,∴=,故②正确;如图,过点A作AM⊥DE于点M,∵DC=2,CH=2,由勾股定理得,DH===4,∵∠CDH+∠ADM=90°,∠DAM+∠ADM=90°,∴∠CDH=∠DAM,又∵AD=CD,∠CHD=∠AMD=90°,∴△ADM≌△DCH(AAS),∴CH=DM=2,AM=DH=4,∴MH=DM=2,又∵AM⊥DH,∴AD=AH,故④正确;∵DE=5,DH=4,∴HE=1,∴ME=HE+MH=3,∵AM⊥DE,CF⊥DE,∴∠AME=∠GHE,∵∠HEG=∠MEA,∴△MEA∽△HEG,∴=,∴=,∴HG=,故③错误.综上,正确的有:①②④.故答案为:①②④.八.正多边形和圆(共1小题)8.(2021•赤峰)如图,在拧开一个边长为a的正六角形螺帽时,扳手张开的开口b=20mm,则边长a= mm.【解答】解:如图,连接OC、OD,过O作OH⊥CD于H.∵∠COD==60°,OC=OD,∴△COD是等边三角形,∴∠COH=90°﹣60°=30°,∵OH⊥CD,∴CH=DH=CD,OH=b=10(mm),∴CH=10×tan30°=(mm),∴a=2CH=(mm),故答案为:.九.解直角三角形的应用-仰角俯角问题(共3小题)9.(2022•赤峰)如图,为了测量校园内旗杆AB的高度,九年级数学应用实践小组,根据光的反射定律,利用镜子、皮尺和测角仪等工具,按以下方式进行测量:把镜子放在点O处,然后观测者沿着水平直线BO后退到点D,这时恰好能在镜子里看到旗杆顶点A,此时测得观测者观看镜子的俯角α=60°,观测者眼睛与地面距离CD=1.7m,BD=11m,则旗杆AB的高度约为 17 m.(结果取整数,≈1.7)【解答】解:由题意可得∠COD=∠AOB=60°,在Rt△COD中,CD=1.7m,tan60°==,解得DO≈1,∴BO=BD﹣DO=11﹣1=10(m),在Rt△AOB中,tan60°==,解得AB≈17,∴旗杆AB的高度约为17m.故答案为:17.10.(2021•赤峰)某滑雪场用无人机测量雪道长度.如图,通过无人机的镜头C测一段水平雪道一端A处的俯角为50°,另一端B处的俯角为45°,若无人机镜头C处的高度CD为238米,点A,D,B在同一直线上,则雪道AB的长度为 438 米.(结果保留整数,参考数据sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)【解答】解:由题意得,∠CAD=50°,∠CBD=45°,在Rt△CBD中,∠CBD=45°,∴BD=CD=238米,在Rt△CAD中,tan∠CAD=,则AD=≈200米,则AB=AD+BD≈438米,答:AB两点间的距离约为438米.故答案为:438.11.(2020•赤峰)如图,航拍无人机从A处测得一幢建筑物顶部C的仰角是30°,测得底部B的俯角是60°,此时无人机与该建筑物的水平距离AD是9米,那么该建筑物的高度BC为 12 米(结果保留根号).【解答】解:根据题意可知:在Rt△ADC中,∠CAD=30°,AD=9米,∴CD=AD•tan30°=9×=3(米),在Rt△ADB中,∠BAD=60°,AD=9米,∴BD=AD•tan60°=9(米),∴BC=CD+BD=3+9=12(米).答;该建筑物的高度BC为12米.故答案为:12.一十.频数(率)分布表(共1小题)12.(2020•赤峰)某校为了解七年级学生的身体素质情况,从七年级各班随机抽取了数量相同的男生和女生,组成一个容量为60的样本,进行各项体育项目的测试.下表是通过整理样本数据,得到的关于每个个体测试成绩的部分统计表:某校60名学生体育测试成绩频数分布表成绩划记频数百分比优秀a30%良好30b合格915%不合格35%合计6060100%如果该校七年级共有300名学生,根据以上数据,估计该校七年级学生身体素质良好及以上的人数为 240 人.【解答】解:根据频数分布表可知:9÷15%=60,∴a=60×30%=18,b=1﹣30%﹣15%﹣5%=50%,∴300×(30%+50%)=240(人).答:估计该校七年级学生身体素质良好及以上的人数为240人.故答案为:240.
相关试卷
这是一份内蒙古赤峰市三年(2020-2022)中考数学真题分类汇编-01选择题,共36页。
这是一份广西贵港市三年(2020-2022)中考数学真题分类汇编-02填空题,共14页。试卷主要包含了计算,因式分解等内容,欢迎下载使用。
这是一份广西梧州三年(2020-2022)中考数学真题分类汇编-02填空题,共14页。试卷主要包含了﹣的相反数是 ,分解因式,计算,=0的根是 等内容,欢迎下载使用。