2022年江苏省无锡市崇安区重点名校中考试题猜想数学试卷含解析
展开这是一份2022年江苏省无锡市崇安区重点名校中考试题猜想数学试卷含解析,共22页。试卷主要包含了下列说法中,正确的个数共有等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.从1、2、3、4、5、6这六个数中随机取出一个数,取出的数是3的倍数的概率是( )
A. B. C. D.
2.小明在九年级进行的六次数学测验成绩如下(单位:分):76、82、91、85、84、85,则这次数学测验成绩的众数和中位数分别为( )
A.91,88 B.85,88 C.85,85 D.85,84.5
3.已知a,b,c在数轴上的位置如图所示,化简|a+c|-|a-2b|-|c+2b|的结果是( )
A.4b+2c B.0 C.2c D.2a+2c
4.吉林市面积约为27100平方公里,将27100这个数用科学记数法表示为( )
A.27.1×102 B.2.71×103 C.2.71×104 D.0.271×105
5.有理数a、b在数轴上的位置如图所示,则下列结论中正确的是( )
A.a+b>0 B.ab>0 C.a﹣b<o D.a÷b>0
6.四张分别画有平行四边形、菱形、等边三角形、圆的卡片,它们的背面都相同。现将它们背面朝上,从中任取一张,卡片上所画图形恰好是中心对称图形的概率是( )
A. B.1 C. D.
7.设x1,x2是方程x2-2x-1=0的两个实数根,则的值是( )
A.-6 B.-5 C.-6或-5 D.6或5
8.下列说法中,正确的个数共有( )
(1)一个三角形只有一个外接圆;
(2)圆既是轴对称图形,又是中心对称图形;
(3)在同圆中,相等的圆心角所对的弧相等;
(4)三角形的内心到该三角形三个顶点距离相等;
A.1个 B.2个 C.3个 D.4个
9.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为( )
A.(3,2) B.(3,1) C.(2,2) D.(4,2)
10.将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为( )
A.y=(x+2)2﹣5 B.y=(x+2)2+5 C.y=(x﹣2)2﹣5 D.y=(x﹣2)2+5
11.下列四个多项式,能因式分解的是( )
A.a-1 B.a2+1
C.x2-4y D.x2-6x+9
12.甲、乙两盒中分别放入编号为1、2、3、4的形状相同的4个小球,从甲盒中任意摸出一球,再从乙盒中任意摸出一球,将两球编号数相加得到一个数,则得到数( )的概率最大.
A.3 B.4 C.5 D.6
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.计算:﹣22÷(﹣)=_____.
14.如图所示,一动点从半径为2的⊙O上的A0点出发,沿着射线A0O方向运动到⊙O上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到⊙O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到⊙O上的点A3处,再向左沿着与射线A3O夹角为60°的方向运动到⊙O上的点A4处;A4A0间的距离是_____;…按此规律运动到点A2019处,则点A2019与点A0间的距离是_____.
15.如图①,在矩形ABCD中,对角线AC与BD交于点O,动点P从点A出发,沿AB匀速运动,到达点B时停止,设点P所走的路程为x,线段OP的长为y,若y与x之间的函数图象如图②所示,则矩形ABCD的周长为_____.
16.已知一个正多边形的内角和是外角和的3倍,那么这个正多边形的每个内角是_____度.
17.关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,则实数k的取值范围是_______.
18.计算:21﹣1=1,22﹣1=3,23﹣1=7,24﹣1=15,25﹣1=31,归纳各计算结果中的个位数字规律,猜测22019﹣1的个位数字是_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)计算:(π﹣3.14)0﹣2﹣|﹣3|.
20.(6分)下表中给出了变量x,与y=ax2,y=ax2+bx+c之间的部分对应值,(表格中的符号“…”表示该项数据已丢失)
x
﹣1
0
1
ax2
…
…
1
ax2+bx+c
7
2
…
(1)求抛物线y=ax2+bx+c的表达式
(2)抛物线y=ax2+bx+c的顶点为D,与y轴的交点为A,点M是抛物线对称轴上一点,直线AM交对称轴右侧的抛物线于点B,当△ADM与△BDM的面积比为2:3时,求B点坐标;
(3)在(2)的条件下,设线段BD与x轴交于点C,试写出∠BAD和∠DCO的数量关系,并说明理由.
21.(6分)某化妆品店老板到厂家选购A、B两种品牌的化妆品,若购进A品牌的化妆品5套,B品牌的化妆品6套,需要950元;若购进A品牌的化妆品3套,B品牌的化妆品2套,需要450元.
(1)求A、B两种品牌的化妆品每套进价分别为多少元?
(2)若销售1套A品牌的化妆品可获利30元,销售1套B品牌的化妆品可获利20元;根据市场需求,店老板决定购进这两种品牌化妆品共50套,且进货价钱不超过4000元,应如何选择进货方案,才能使卖出全部化妆品后获得最大利润,最大利润是多少?
22.(8分)在矩形ABCD中,AD=2AB,E是AD的中点,一块三角板的直角顶点与点E重合,两直角边与AB,BC分别交于点M,N,求证:BM=CN.
23.(8分)在Rt△ABC中,∠BAC=,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE的延长线于点F.
求证:△AEF≌△DEB;证明四边形ADCF是菱形;若AC=4,AB=5,求菱形ADCFD 的面积.
24.(10分)如图,抛物线y=ax2+bx﹣2经过点A(4,0),B(1,0).
(1)求出抛物线的解析式;
(2)点D是直线AC上方的抛物线上的一点,求△DCA面积的最大值;
(3)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.
25.(10分)解不等式组
请结合题意填空,完成本题的解答
(1)解不等式①,得_______.
(2)解不等式②,得_______.
(3)把不等式①和②的解集在数轴上表示出来:
(4)原不等式组的解集为_______________.
26.(12分)对几何命题进行逆向思考是几何研究中的重要策略,我们知道,等腰三角形两腰上的高 线相等,那么等腰三角形两腰上的中线,两底角的角平分线也分别相等吗?它们的逆命 题会正确吗?
(1)请判断下列命题的真假,并在相应命题后面的括号内填上“真”或“假”.
①等腰三角形两腰上的中线相等 ;
②等腰三角形两底角的角平分线相等 ;
③有两条角平分线相等的三角形是等腰三角形 ;
(2)请写出“等腰三角形两腰上的中线相等”的逆命题,如果逆命题为真,请画出图形,写出已知、求证并进行证明,如果不是,请举出反例.
27.(12分)如图,在矩形ABCD中,AB=3,BC=4,将矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',B'C与AD交于点E,AD的延长线与A'D'交于点F.
(1)如图①,当α=60°时,连接DD',求DD'和A'F的长;
(2)如图②,当矩形A'B'CD'的顶点A'落在CD的延长线上时,求EF的长;
(3)如图③,当AE=EF时,连接AC,CF,求AC•CF的值.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
考点:概率公式.
专题:计算题.
分析:根据概率的求法,找准两点:
①全部情况的总数;
②符合条件的情况数目;二者的比值就是其发生的概率.解答:解:从1、2、3、4、5、6这六个数中随机取出一个数,共有6种情况,取出的数是3的倍数的可能有3和6两种,
故概率为2/ 6 ="1/" 3 .
故选B.
点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)="m" /n .
2、D
【解析】
试题分析:根据众数的定义:出现次数最多的数,中位数定义:把所有的数从小到大排列,位置处于中间的数,即可得到答案.众数出现次数最多的数,85出现了2次,次数最多,所以众数是:85,
把所有的数从小到大排列:76,82,84,85,85,91,位置处于中间的数是:84,85,因此中位数是:(85+84)÷2=84.5,故选D.
考点:众数,中位数
点评:此题主要考查了众数与中位数的意义,关键是正确把握两种数的定义,即可解决问题
3、A
【解析】
由数轴上点的位置得:b|c|>|a|,
∴a+c>0,a−2b>0,c+2b<0,
则原式=a+c−a+2b+c+2b=4b +2c.
故选:B.
点睛:本题考查了整式的加减以及数轴,涉及的知识有:去括号法则以及合并同类项法则,熟练掌握运算法则是解本题的关键.
4、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
将27100用科学记数法表示为:. 2.71×104.
故选:C.
【点睛】
本题考查科学记数法—表示较大的数。
5、C
【解析】
利用数轴先判断出a、b的正负情况以及它们绝对值的大小,然后再进行比较即可.
【详解】
解:由a、b在数轴上的位置可知:a<1,b>1,且|a|>|b|,
∴a+b<1,ab<1,a﹣b<1,a÷b<1.
故选:C.
6、A
【解析】
∵在:平行四边形、菱形、等边三角形和圆这4个图形中属于中心对称图形的有:平行四边形、菱形和圆三种,
∴从四张卡片中任取一张,恰好是中心对称图形的概率=.
故选A.
7、A
【解析】
试题解析:∵x1,x2是方程x2-2x-1=0的两个实数根,
∴x1+x2=2,x1∙x2=-1
∴=.
故选A.
8、C
【解析】
根据外接圆的性质,圆的对称性,三角形的内心以及圆周角定理即可解出.
【详解】
(1)一个三角形只有一个外接圆,正确;
(2)圆既是轴对称图形,又是中心对称图形,正确;
(3)在同圆中,相等的圆心角所对的弧相等,正确;
(4)三角形的内心是三个内角平分线的交点,到三边的距离相等,错误;
故选:C.
【点睛】
此题考查了外接圆的性质,三角形的内心及轴对称和中心对称的概念,要求学生对这些概念熟练掌握.
9、A
【解析】
∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,
∴=,
∵BG=6,
∴AD=BC=2,
∵AD∥BG,
∴△OAD∽△OBG,
∴=,
∴=,
解得:OA=1,∴OB=3,
∴C点坐标为:(3,2),
故选A.
10、A
【解析】
直接根据“上加下减,左加右减”的原则进行解答即可.
【详解】
抛物线y=x2的顶点坐标为(0,0),
先向左平移2个单位再向下平移1个单位后的抛物线的顶点坐标为(﹣2,﹣1),
所以,平移后的抛物线的解析式为y=(x+2)2﹣1.
故选:A.
【点睛】
本题考查了二次函数的图象与几何变换,熟知函数图象平移的法则是解答本题的关键.
11、D
【解析】
试题分析:利用平方差公式及完全平方公式的结构特征判断即可.
试题解析:x2-6x+9=(x-3)2.
故选D.
考点:2.因式分解-运用公式法;2.因式分解-提公因式法.
12、C
【解析】
解:甲和乙盒中1个小球任意摸出一球编号为1、2、3、1的概率各为,
其中得到的编号相加后得到的值为{2,3,1,5,6,7,8}
和为2的只有1+1;
和为3的有1+2;2+1;
和为1的有1+3;2+2;3+1;
和为5的有1+1;2+3;3+2;1+1;
和为6的有2+1;1+2;
和为7的有3+1;1+3;
和为8的有1+1.
故p(5)最大,故选C.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1
【解析】
解:原式==1.故答案为1.
14、 1.
【解析】
据题意求得A0A1=4,A0A1=,A0A3=1,A0A4=,A0A5=1,A0A6=0,A0A7=4,…于是得到A1019与A3重合,即可得到结论.
【详解】
解:如图,
∵⊙O的半径=1,
由题意得,A0A1=4,A0A1=,A0A3=1,A0A4=,A0A5=1,A0A6=0,A0A7=4,…
∵1019÷6=336…3,
∴按此规律A1019与A3重合,
∴A0A1019=A0A3=1,
故答案为,1.
【点睛】
本题考查了图形的变化类,等边三角形的性质,解直角三角形,正确的作出图形是解题的关键.
15、1
【解析】
分析:根据点P的移动规律,当OP⊥BC时取最小值2,根据矩形的性质求得矩形的长与宽,易得该矩形的周长.
详解:∵当OP⊥AB时,OP最小,且此时AP=4,OP=2,
∴AB=2AP=8,AD=2OP=6,
∴C矩形ABCD=2(AB+AD)=2×(8+6)=1.
故答案为1.
点睛:本题考查了动点问题的函数图象,关键是根据所给函数图象和点的运动轨迹判断出AP=4,OP=2.
16、1.
【解析】
先由多边形的内角和和外角和的关系判断出多边形的边数,即可得到结论.
【详解】
设多边形的边数为n.
因为正多边形内角和为 ,正多边形外角和为
根据题意得:
解得:n=8.
∴这个正多边形的每个外角
则这个正多边形的每个内角是
故答案为:1.
【点睛】
考查多边形的内角和与外角和,熟练掌握多边形内角和公式是解题的关键.
17、k<2且k≠1
【解析】
试题解析:∵关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,
∴k-1≠0且△=(-2)2-4(k-1)>0,
解得:k<2且k≠1.
考点:1.根的判别式;2.一元二次方程的定义.
18、1
【解析】
观察给出的数,发现个位数是循环的,然后再看2019÷4的余数,即可求解.
【详解】
由给出的这组数21﹣1=1,22﹣1=3,23﹣1=1,24﹣1=15,25﹣1=31,…,
个位数字1,3,1,5循环出现,四个一组,
2019÷4=504…3,
∴22019﹣1的个位数是1.
故答案为1.
【点睛】
本题考查数的循环规律,确定循环规律,找准余数是解题的关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、﹣1.
【解析】
本题涉及零指数幂、负指数幂、二次根式化简和特殊角的三角函数值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.
【详解】
原式
=1﹣3+4﹣3,
=﹣1.
【点睛】
本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.
20、 (1) y=x2﹣4x+2;(2) 点B的坐标为(5,7);(1)∠BAD和∠DCO互补,理由详见解析.
【解析】
(1)由(1,1)在抛物线y=ax2上可求出a值,再由(﹣1,7)、(0,2)在抛物线y=x2+bx+c上可求出b、c的值,此题得解;
(2)由△ADM和△BDM同底可得出两三角形的面积比等于高的比,结合点A的坐标即可求出点B的横坐标,再利用二次函数图象上点的坐标特征即可求出点B的坐标;
(1)利用二次函数图象上点的坐标特征可求出A、D的坐标,过点A作AN∥x轴,交BD于点N,则∠AND=∠DCO,根据点B、D的坐标利用待定系数法可求出直线BD的解析式,利用一次函数图象上点的坐标特征可求出点N的坐标,利用两点间的距离公式可求出BA、BD、BN的长度,由三者间的关系结合∠ABD=∠NBA,可证出△ABD∽△NBA,根据相似三角形的性质可得出∠ANB=∠DAB,再由∠ANB+∠AND=120°可得出∠DAB+∠DCO=120°,即∠BAD和∠DCO互补.
【详解】
(1)当x=1时,y=ax2=1,
解得:a=1;
将(﹣1,7)、(0,2)代入y=x2+bx+c,得:
,解得:,
∴抛物线的表达式为y=x2﹣4x+2;
(2)∵△ADM和△BDM同底,且△ADM与△BDM的面积比为2:1,
∴点A到抛物线的距离与点B到抛物线的距离比为2:1.
∵抛物线y=x2﹣4x+2的对称轴为直线x=﹣=2,点A的横坐标为0,
∴点B到抛物线的距离为1,
∴点B的横坐标为1+2=5,
∴点B的坐标为(5,7).
(1)∠BAD和∠DCO互补,理由如下:
当x=0时,y=x2﹣4x+2=2,
∴点A的坐标为(0,2),
∵y=x2﹣4x+2=(x﹣2)2﹣2,
∴点D的坐标为(2,﹣2).
过点A作AN∥x轴,交BD于点N,则∠AND=∠DCO,如图所示.
设直线BD的表达式为y=mx+n(m≠0),
将B(5,7)、D(2,﹣2)代入y=mx+n,
,解得:,
∴直线BD的表达式为y=1x﹣2.
当y=2时,有1x﹣2=2,
解得:x=,
∴点N的坐标为(,2).
∵A(0,2),B(5,7),D(2,﹣2),
∴AB=5,BD=1,BN=,
∴==.
又∵∠ABD=∠NBA,
∴△ABD∽△NBA,
∴∠ANB=∠DAB.
∵∠ANB+∠AND=120°,
∴∠DAB+∠DCO=120°,
∴∠BAD和∠DCO互补.
【点睛】
本题是二次函数综合题,考查了待定系数法求二次函数和一次函数解析式、等底三角形面积的关系、二次函数的图像与性质、相似三角形的判定与性质.熟练掌握待定系数法是解(1)的关键;熟练掌握等底三角形面积的关系式解(2)的关键;证明△ABD∽△NBA是解(1)的关键.
21、(1)A、B两种品牌得化妆品每套进价分别为100元,75元;(2)A种品牌得化妆品购进10套,B种品牌得化妆品购进40套,才能使卖出全部化妆品后获得最大利润,最大利润是1100元
【解析】
(1)求A、B两种品牌的化妆品每套进价分别为多少元,可设A种品牌的化妆品每套进价为x元,B种品牌的化妆品每套进价为y元.根据两种购买方法,列出方程组解方程;
(2)根据题意列出不等式,求出m的范围,再用代数式表示出利润,即可得出答案.
【详解】
(1)设A种品牌的化妆品每套进价为x元,B种品牌的化妆品每套进价为y元.
得
解得:,
答:A、B两种品牌得化妆品每套进价分别为100元,75元.
(2)设A种品牌得化妆品购进m套,则B种品牌得化妆品购进(50﹣m)套.
根据题意得:100m+75(50﹣m)≤4000,且50﹣m≥0,
解得,5≤m≤10,
利润是30m+20(50﹣m)=1000+10m,
当m取最大10时,利润最大,
最大利润是1000+100=1100,
所以A种品牌得化妆品购进10套,B种品牌得化妆品购进40套,才能使卖出全部化妆品后获得最大利润,最大利润是1100元.
【点睛】
本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.
22、证明见解析.
【解析】
试题分析:作于点F,然后证明≌ ,从而求出所所以BM与CN的长度相等.
试题解析:在矩形ABCD中,AD=2AB,E是AD的中点,作EF⊥BC于点F,
则有AB=AE=EF=FC,
∴∠AEM=∠FEN,
在Rt△AME和Rt△FNE中,
∵E为AB的中点,
∴AB=CF,
∠AEM=∠FEN,AE=EF,∠MAE=∠NFE,
∴Rt△AME≌Rt△FNE,
∴AM=FN,
∴MB=CN.
23、(1)证明详见解析;(2)证明详见解析;(3)1.
【解析】
(1)利用平行线的性质及中点的定义,可利用AAS证得结论;
(2)由(1)可得AF=BD,结合条件可求得AF=DC,则可证明四边形ADCF为平行四边形,再利用直角三角形的性质可证得AD=CD,可证得四边形ADCF为菱形;
(3)连接DF,可证得四边形ABDF为平行四边形,则可求得DF的长,利用菱形的面积公式可求得答案.
【详解】
(1)证明:∵AF∥BC,
∴∠AFE=∠DBE,
∵E是AD的中点,
∴AE=DE,
在△AFE和△DBE中,
∴△AFE≌△DBE(AAS);
(2)证明:由(1)知,△AFE≌△DBE,则AF=DB.
∵AD为BC边上的中线
∴DB=DC,
∴AF=CD.
∵AF∥BC,
∴四边形ADCF是平行四边形,
∵∠BAC=90°,D是BC的中点,E是AD的中点,
∴AD=DC=BC,
∴四边形ADCF是菱形;
(3)连接DF,
∵AF∥BD,AF=BD,
∴四边形ABDF是平行四边形,
∴DF=AB=5,
∵四边形ADCF是菱形,
∴S菱形ADCF=AC▪DF=×4×5=1.
【点睛】
本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD是解题的关键,注意菱形面积公式的应用.
24、(1)y=﹣x2+x﹣2;(2)当t=2时,△DAC面积最大为4;(3)符合条件的点P为(2,1)或(5,﹣2)或(﹣3,﹣14).
【解析】
(1)把A与B坐标代入解析式求出a与b的值,即可确定出解析式;(2)如图所示,过D作DE与y轴平行,三角形ACD面积等于DE与OA乘积的一半,表示出S与t的二次函数解析式,利用二次函数性质求出S的最大值即可;(3)存在P点,使得以A,P,M为顶点的三角形与△OAC相似,分当1<m<4时;当m<1时;当m>4时三种情况求出点P坐标即可.
【详解】
(1)∵该抛物线过点A(4,0),B(1,0),
∴将A与B代入解析式得:,解得:,
则此抛物线的解析式为y=﹣x2+x﹣2;
(2)如图,设D点的横坐标为t(0<t<4),则D点的纵坐标为﹣t2+t﹣2,
过D作y轴的平行线交AC于E,
由题意可求得直线AC的解析式为y=x﹣2,
∴E点的坐标为(t,t﹣2),
∴DE=﹣t2+t﹣2﹣(t﹣2)=﹣t2+2t,
∴S△DAC=×(﹣t2+2t)×4=﹣t2+4t=﹣(t﹣2)2+4,
则当t=2时,△DAC面积最大为4;
(3)存在,如图,
设P点的横坐标为m,则P点的纵坐标为﹣m2+m﹣2,
当1<m<4时,AM=4﹣m,PM=﹣m2+m﹣2,
又∵∠COA=∠PMA=90°,
∴①当==2时,△APM∽△ACO,即4﹣m=2(﹣m2+m﹣2),
解得:m=2或m=4(舍去),
此时P(2,1);
②当==时,△APM∽△CAO,即2(4﹣m)=﹣m2+m﹣2,
解得:m=4或m=5(均不合题意,舍去)
∴当1<m<4时,P(2,1);
类似地可求出当m>4时,P(5,﹣2);
当m<1时,P(﹣3,﹣14),
综上所述,符合条件的点P为(2,1)或(5,﹣2)或(﹣3,﹣14).
【点睛】
本题综合考查了抛物线解析式的求法,抛物线与相似三角形的问题,坐标系里求三角形的面积及其最大值问题,要求会用字母代替长度,坐标,会对代数式进行合理变形,解决相似三角形问题时要注意分类讨论.
25、(1)x≥-1;(2)x≤1;(3)见解析;(4)-1≤x≤1.
【解析】
分别解两个不等式,然后根据公共部分确定不等式组的解集,再利用数轴表示解集.
【详解】
解:(1)x≥-1;
(2)x≤1;
(3);
(4)原不等式组的解集为-1≤x≤1.
【点睛】
本题考查了解一元一次不等式组:一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.
26、(1)①真;②真;③真;(2)逆命题是:有两边上的中线相等的三角形是等腰三角形;见解析.
【解析】
(1)根据命题的真假判断即可;
(2)根据全等三角形的判定和性质进行证明即可.
【详解】
(1)①等腰三角形两腰上的中线相等是真命题;
②等腰三角形两底角的角平分线相等是真命题;
③有两条角平分线相等的三角形是等腰三角形是真命题;
故答案为真;真;真;
(2)逆命题是:有两边上的中线相等的三角形是等腰三角形;
已知:如图,△ABC中,BD,CE分别是AC,BC边上的中线,且BD=CE,
求证:△ABC是等腰三角形;
证明:连接DE,过点D作DF∥EC,交BC的延长线于点F,
∵BD,CE分别是AC,BC边上的中线,
∴DE是△ABC的中位线,
∴DE∥BC,
∵DF∥EC,
∴四边形DECF是平行四边形,
∴EC=DF,
∵BD=CE,
∴DF=BD,
∴∠DBF=∠DFB,
∵DF∥EC,
∴∠F=∠ECB,
∴∠ECB=∠DBC,
在△DBC与△ECB中
,
∴△DBC≌△ECB,
∴EB=DC,
∴AB=AC,
∴△ABC是等腰三角形.
【点睛】
本题考查了全等三角形的判定与性质及等腰三角形的性质;证明的步骤是:先根据题意画出图形,再根据图形写出已知和求证,最后写出证明过程.
27、(1)DD′=1,A′F= 4﹣;(2);(1).
【解析】
(1)①如图①中,∵矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',只要证明△CDD′是等边三角形即可解决问题;
②如图①中,连接CF,在Rt△CD′F中,求出FD′即可解决问题;
(2)由△A′DF∽△A′D′C,可推出DF的长,同理可得△CDE∽△CB′A′,可求出DE的长,即可解决问题;
(1)如图③中,作FG⊥CB′于G,由S△ACF=•AC•CF=•AF•CD,把问题转化为求AF•CD,只要证明∠ACF=90°,证明△CAD∽△FAC,即可解决问题;
【详解】
解:(1)①如图①中,∵矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',
∴A′D′=AD=B′C=BC=4,CD′=CD=A′B′=AB=1∠A′D′C=∠ADC=90°.
∵α=60°,∴∠DCD′=60°,∴△CDD′是等边三角形,
∴DD′=CD=1.
②如图①中,连接CF.∵CD=CD′,CF=CF,∠CDF=∠CD′F=90°,
∴△CDF≌△CD′F,∴∠DCF=∠D′CF=∠DCD′=10°.
在Rt△CD′F中,∵tan∠D′CF=,
∴D′F=,∴A′F=A′D′﹣D′F=4﹣.
(2)如图②中,在Rt△A′CD′中,∵∠D′=90°,
∴A′C2=A′D′2+CD′2,∴A′C=5,A′D=2.∵∠DA′F=∠CA′D′,∠A′DF=∠D′=90°,
∴△A′DF∽△A′D′C,∴,∴,
∴DF=.
同理可得△CDE∽△CB′A′,∴,∴,
∴ED=,∴EF=ED+DF=.
(1)如图③中,作FG⊥CB′于G.∵四边形A′B′CD′是矩形,∴GF=CD′=CD=1.
∵S△CEF=•EF•DC=•CE•FG,
∴CE=EF,∵AE=EF,∴AE=EF=CE,∴∠ACF=90°.
∵∠ADC=∠ACF,∠CAD=∠FAC,∴△CAD∽△FAC,∴,
∴AC2=AD•AF,∴AF=.
∵S△ACF=•AC•CF=•AF•CD,
∴AC•CF=AF•CD=.
相关试卷
这是一份江苏省泰州市海陵区重点名校2022年中考试题猜想数学试卷含解析,共19页。试卷主要包含了计算-3-1的结果是等内容,欢迎下载使用。
这是一份2022年江苏省南京市六区重点名校中考试题猜想数学试卷含解析,共16页。试卷主要包含了下列运算正确的是,计算x﹣2y﹣等内容,欢迎下载使用。
这是一份2022年江苏省大丰市重点达标名校中考试题猜想数学试卷含解析,共19页。试卷主要包含了估计5﹣的值应在等内容,欢迎下载使用。