|试卷下载
搜索
    上传资料 赚现金
    2022年安徽宣城古泉中学毕业升学考试模拟卷数学卷含解析
    立即下载
    加入资料篮
    2022年安徽宣城古泉中学毕业升学考试模拟卷数学卷含解析01
    2022年安徽宣城古泉中学毕业升学考试模拟卷数学卷含解析02
    2022年安徽宣城古泉中学毕业升学考试模拟卷数学卷含解析03
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年安徽宣城古泉中学毕业升学考试模拟卷数学卷含解析

    展开
    这是一份2022年安徽宣城古泉中学毕业升学考试模拟卷数学卷含解析,共19页。试卷主要包含了在平面直角坐标系内,点P等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.已知为单位向量,=,那么下列结论中错误的是( )
    A.∥ B. C.与方向相同 D.与方向相反
    2.如图所示:有理数在数轴上的对应点,则下列式子中错误的是( )

    A. B. C. D.
    3.已知一元二次方程2x2+2x﹣1=0的两个根为x1,x2,且x1<x2,下列结论正确的是(  )
    A.x1+x2=1 B.x1•x2=﹣1 C.|x1|<|x2| D.x12+x1=
    4.向某一容器中注水,注满为止,表示注水量与水深的函数关系的图象大致如图所示,则该容器可能是(  )

    A. B.
    C. D.
    5.某工厂计划生产210个零件,由于采用新技术,实际每天生产零件的数量是原计划的1.5倍,因此提前5天完成任务.设原计划每天生产零件个,依题意列方程为( )
    A. B.
    C. D.
    6.某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元.
    A. B. C. D.
    7.在平面直角坐标系内,点P(a,a+3)的位置一定不在(  )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    8.三角形的两边长分别为3和6,第三边的长是方程x2﹣6x+8=0的一个根,则这个三角形的周长是(  )
    A.9 B.11 C.13 D.11或13
    9.如图是由若干个相同的小正方体搭成的一个几何体的主视图和俯视图,则所需的小正方体的个数最少是(  )

    A. B. C. D.
    10.一个几何体的三视图如图所示,该几何体是  

    A.直三棱柱 B.长方体 C.圆锥 D.立方体
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,在Rt△ABC中,∠C=90°,AC=6,∠A=60°,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是_________.

    12.国家游泳中心“水立方”是奥运会标志性建筑之一,其工程占地面积约为62800m2,将62800用科学记数法表示为_____.
    13.内接于圆,设,圆的半径为,则所对的劣弧长为_____(用含的代数式表示).
    14.方程的解是__________.
    15.据统计,今年无锡鼋头渚“樱花节”活动期间入园赏樱人数约803万人次,用科学记数法可表示为_____人次.
    16.若方程x2﹣2x﹣1=0的两根分别为x1,x2,则x1+x2﹣x1x2的值为_____.
    17.若2x+y=2,则4x+1+2y的值是_______.
    三、解答题(共7小题,满分69分)
    18.(10分)计算:=_____.
    19.(5分)科研所计划建一幢宿舍楼,因为科研所实验中会产生辐射,所以需要有两项配套工程.①在科研所到宿舍楼之间修一条高科技的道路;②对宿含楼进行防辐射处理;已知防辐射费y万元与科研所到宿舍楼的距离xkm之间的关系式为y=ax+b(0≤x≤3).当科研所到宿舍楼的距离为1km时,防辐射费用为720万元;当科研所到宿含楼的距离为3km或大于3km时,辐射影响忽略不计,不进行防辐射处理,设修路的费用与x2成正比,且比例系数为m万元,配套工程费w=防辐射费+修路费.
    (1)当科研所到宿舍楼的距离x=3km时,防辐射费y=____万元,a=____,b=____;
    (2)若m=90时,求当科研所到宿舍楼的距离为多少km时,配套工程费最少?
    (3)如果最低配套工程费不超过675万元,且科研所到宿含楼的距离小于等于3km,求m的范围?
    20.(8分)解不等式组并写出它的整数解.
    21.(10分)小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,把手AM的仰角α=37°,此时把手端点A、出水口B和点落水点C在同一直线上,洗手盆及水龙头的相关数据如图2.(参考数据:sin37°= ,cos37°= ,tan37°= ) 
    (1)求把手端点A到BD的距离; 
    (2)求CH的长. 

    22.(10分)(定义)如图1,A,B为直线l同侧的两点,过点A作直线1的对称点A′,连接A′B交直线l于点P,连接AP,则称点P为点A,B关于直线l的“等角点”.
    (运用)如图2,在平面直坐标系xOy中,已知A(2,),B(﹣2,﹣)两点.
    (1)C(4,),D(4,),E(4,)三点中,点   是点A,B关于直线x=4的等角点;
    (2)若直线l垂直于x轴,点P(m,n)是点A,B关于直线l的等角点,其中m>2,∠APB=α,求证:tan=;
    (3)若点P是点A,B关于直线y=ax+b(a≠0)的等角点,且点P位于直线AB的右下方,当∠APB=60°时,求b的取值范围(直接写出结果).

    23.(12分)如图,已知平行四边形OBDC的对角线相交于点E,其中O(0,0),B(3,4),C(m,0),反比例函数y=(k≠0)的图象经过点B.求反比例函数的解析式;若点E恰好落在反比例函数y=上,求平行四边形OBDC的面积.

    24.(14分)如图1,已知抛物线y=ax2+bx(a≠0)经过A(6,0)、B(8,8)两点.
    (1)求抛物线的解析式;
    (2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D的坐标;
    (3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,在坐标平面内有点P,求出所有满足△POD∽△NOB的点P坐标(点P、O、D分别与点N、O、B对应).




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    由向量的方向直接判断即可.
    【详解】
    解:为单位向量,=,所以与方向相反,所以C错误,
    故选C.
    【点睛】
    本题考查了向量的方向,是基础题,较简单.
    2、C
    【解析】
    从数轴上可以看出a、b都是负数,且a<b,由此逐项分析得出结论即可.
    【详解】
    由数轴可知:a B、同号相加,取相同的符号,a+b<0是正确的;
    C、a<b<0,,故选项是错误的;
    D、a-b=a+(-b)取a的符号,a-b<0是正确的.
    故选:C.
    【点睛】
    此题考查有理数的混合运算,数轴,解题关键在于结合数轴进行解答.
    3、D
    【解析】
    【分析】直接利用根与系数的关系对A、B进行判断;由于x1+x2<0,x1x2<0,则利用有理数的性质得到x1、x2异号,且负数的绝对值大,则可对C进行判断;利用一元二次方程解的定义对D进行判断.
    【详解】根据题意得x1+x2=﹣=﹣1,x1x2=﹣,故A、B选项错误;
    ∵x1+x2<0,x1x2<0,
    ∴x1、x2异号,且负数的绝对值大,故C选项错误;
    ∵x1为一元二次方程2x2+2x﹣1=0的根,
    ∴2x12+2x1﹣1=0,
    ∴x12+x1=,故D选项正确,
    故选D.
    【点睛】本题考查了一元二次方程的解、一元二次方程根与系数的关系,熟练掌握相关内容是解题的关键.
    4、D
    【解析】
    根据函数的图象和所给出的图形分别对每一项进行判断即可.
    【详解】
    由函数图象知: 随高度h的增加, y也增加,但随h变大, 每单位高度的增加, 注水量h的增加量变小, 图象上升趋势变缓, 其原因只能是水瓶平行于底面的截面的半径由底到顶逐渐变小, 故D项正确.
    故选: D.
    【点睛】
    本题主要考查函数模型及其应用.
    5、A
    【解析】
    设原计划每天生产零件x个,则实际每天生产零件为1.5x个,根据提前5天完成任务,列方程即可.
    【详解】
    设原计划每天生产零件x个,则实际每天生产零件为1.5x个,
    由题意得,
    故选:A.
    【点睛】
    本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程即可.
    6、B
    【解析】
    设商品进价为x元,则售价为每件0.8×200元,由利润=售价-进价建立方程求出其解即可.
    【详解】
    解:设商品的进价为x元,售价为每件0.8×200元,由题意得
    0.8×200=x+40
    解得:x=120
    答:商品进价为120元.
    故选:B.
    【点睛】
    此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键.
    7、D
    【解析】
    判断出P的横纵坐标的符号,即可判断出点P所在的相应象限.
    【详解】
    当a为正数的时候,a+3一定为正数,所以点P可能在第一象限,一定不在第四象限, 当a为负数的时候,a+3可能为正数,也可能为负数,所以点P可能在第二象限,也可能在第三象限, 
    故选D.
    【点睛】
    本题考查了点的坐标的知识点,解题的关键是由a的取值判断出相应的象限.
    8、C
    【解析】
    试题分析:先求出方程x2-6x+8=0的解,再根据三角形的三边关系求解即可.
    解方程x2-6x+8=0得x=2或x=4
    当x=2时,三边长为2、3、6,而2+3<6,此时无法构成三角形
    当x=4时,三边长为4、3、6,此时可以构成三角形,周长=4+3+6=13
    故选C.
    考点:解一元二次方程,三角形的三边关系
    点评:解题的关键是熟记三角形的三边关系:任两边之和大于第三边,任两边之差小于第三边.
    9、B
    【解析】
    主视图、俯视图是分别从物体正面、上面看,所得到的图形.
    【详解】
    综合主视图和俯视图,底层最少有个小立方体,第二层最少有个小立方体,因此搭成这个几何体的小正方体的个数最少是个.
    故选:B.
    【点睛】
    此题考查由三视图判断几何体,解题关键在于识别图形
    10、A
    【解析】
    根据三视图的形状可判断几何体的形状.
    【详解】
    观察三视图可知,该几何体是直三棱柱.
    故选A.
    本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、 .
    【解析】
    延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.运用勾股定理求解.
    【详解】
    解:如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.

    ∵AC=6,CF=1,
    ∴AF=AC-CF=4,
    ∵∠A=60°,∠AMF=90°,
    ∴∠AFM=30°,
    ∴AM=AF=1,
    ∴FM==1 ,
    ∵FP=FC=1,
    ∴PM=MF-PF=1-1,
    ∴点P到边AB距离的最小值是1-1.
    故答案为: 1-1.
    【点睛】
    本题考查了翻折变换,涉及到的知识点有直角三角形两锐角互余、勾股定理等,解题的关键是确定出点P的位置.
    12、6.28×1.
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    62800用科学记数法表示为6.28×1.
    故答案为6.28×1.
    【点睛】
    此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    13、或
    【解析】
    分0°<x°≤90°、90°<x°≤180°两种情况,根据圆周角定理求出∠DOC,根据弧长公式计算即可.
    【详解】
    解:当0°<x°≤90°时,如图所示:连接OC,

    由圆周角定理得,∠BOC=2∠A=2x°,
    ∴∠DOC=180°-2x°,
    ∴∠OBC所对的劣弧长=,
    当90°<x°≤180°时,同理可得,∠OBC所对的劣弧长= .
    故答案为:或.
    【点睛】
    本题考查了三角形的外接圆与外心、弧长的计算,掌握弧长公式、圆周角定理是解题的关键.
    14、x=1
    【解析】
    将方程两边平方后求解,注意检验.
    【详解】
    将方程两边平方得x-3=4,
    移项得:x=1,
    代入原方程得=2,原方程成立,
    故方程=2的解是x=1.
    故本题答案为:x=1.
    【点睛】
    在解无理方程是最常用的方法是两边平方法及换元法,解得答案时一定要注意代入原方程检验.
    15、8.03×106
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.803万=.
    16、1
    【解析】
    根据题意得x1+x2=2,x1x2=﹣1,
    所以x1+x2﹣x1x2=2﹣(﹣1)=1.
    故答案为1.
    17、1
    【解析】
    分析:将原式化简成2(2x+y)+1,然后利用整体代入的思想进行求解得出答案.
    详解:原式=2(2x+y)+1=2×2+1=1.
    点睛:本题主要考查的是整体思想求解,属于基础题型.找到整体是解题的关键.

    三、解答题(共7小题,满分69分)
    18、1
    【解析】
    首先计算负整数指数幂和开平方,再计算减法即可.
    【详解】
    解:原式=9﹣3=1.
    【点睛】
    此题主要考查了实数运算,关键是掌握负整数指数幂:为正整数).
    19、 (1)0,﹣360,101;(2)当距离为2公里时,配套工程费用最少;(3)0<m≤1.
    【解析】
    (1)当x=1时,y=720,当x=3时,y=0,将x、y代入y=ax+b,即可求解;
    (2)根据题目:配套工程费w=防辐射费+修路费分0≤x≤3和x≥3时讨论.
    ①当0≤x≤3时,配套工程费W=90x2﹣360x+101,②当x≥3时,W=90x2,分别求最小值即可;
    (3)0≤x≤3,W=mx2﹣360x+101,(m>0),其对称轴x=,然后讨论:x==3时和x=>3时两种情况m取值即可求解.
    【详解】
    解:(1)当x=1时,y=720,当x=3时,y=0,将x、y代入y=ax+b,
    解得:a=﹣360,b=101,
    故答案为0,﹣360,101;
    (2)①当0≤x≤3时,配套工程费W=90x2﹣360x+101,
    ∴当x=2时,Wmin=720;
    ②当x≥3时,W=90x2,
    W随x最大而最大,
    当x=3时,Wmin=810>720,
    ∴当距离为2公里时,配套工程费用最少;
    (3)∵0≤x≤3,
    W=mx2﹣360x+101,(m>0),其对称轴x=,
    当x=≤3时,即:m≥60,
    Wmin=m()2﹣360()+101,
    ∵Wmin≤675,解得:60≤m≤1;
    当x=>3时,即m<60,
    当x=3时,Wmin=9m<675,
    解得:0<m<60,
    故:0<m≤1.
    【点睛】
    本题考查了二次函数的性质在实际生活中的应用.最值问题常利函数的增减性来解答.
    20、不等式组的解集是5<x≤1,整数解是6,1
    【解析】
    先分别求出两个不等式的解,求出解集,再根据整数的定义得到答案.
    【详解】

    ∵解①得:x>5,
    解不等式②得:x≤1,
    ∴不等式组的解集是5<x≤1,
    ∴不等式组的整数解是6,1.
    【点睛】
    本题考查求一元一次不等式组,解题的关键是掌握求一元一次不等式组的方法
    21、(1)12;(2)CH的长度是10cm.
    【解析】
    (1)、过点A作于点N,过点M作于点Q,根据Rt△AMQ中α的三角函数得出得出AN的长度;
    (2)、根据△ANB和△AGC相似得出DN的长度,然后求出BN的长度,最后求出GC的长度,从而得出答案.
    【详解】
    解:(1)、过点A作于点N,过点M作于点Q.

    在中,.
    ∴,
    ∴,
    ∴.
    (2)、根据题意:∥.
    ∴.
    ∴.
    ∵,
    ∴.
    ∴.
    ∴.
    ∴.
    答:的长度是10cm .
    点睛:本题考查了相似三角形的应用以及三角函数的应用,在运用数学知识解决问题过程中,关注核心内容,经历测量、运算、建模等数学实践活动为主线的问题探究过程,突出考查数学的应用意识和解决问题的能力,蕴含数学建模,引导学生关注生活,利用数学方法解决实际问题.
    22、(1)C(2)(3)b<﹣且b≠﹣2或b>
    【解析】
    (1)先求出B关于直线x=4的对称点B′的坐标,根据A、B′的坐标可得直线AB′的解析式,把x=4代入求出P点的纵坐标即可得答案;(2)如图:过点A作直线l的对称点A′,连A′B′,交直线l于点P,作BH⊥l于点H,根据对称性可知∠APG=A′PG,由∠AGP=∠BHP=90°可证明△AGP∽△BHP,根据相似三角形对应边成比例可得m=
    根据外角性质可知∠A=∠A′=,在Rt△AGP中,根据正切定义即可得结论;(3)当点P位于直线AB的右下方,∠APB=60°时,点P在以AB为弦,所对圆周为60°,且圆心在AB下方,若直线y=ax+b(a≠0)与圆相交,设圆与直线y=ax+b(a≠0)的另一个交点为Q
    根据对称性质可证明△ABQ是等边三角形,即点Q为定点,若直线y=ax+b(a≠0)与圆相切,易得P、Q重合,所以直线y=ax+b(a≠0)过定点Q,连OQ,过点A、Q分别作AM⊥y轴,QN⊥y轴,垂足分别为M、N,可证明△AMO∽△ONQ,根据相似三角形对应边成比例可得ON、NQ的长,即可得Q点坐标,根据A、B、Q的坐标可求出直线AQ、BQ的解析式,根据P与A、B重合时b的值求出b的取值范围即可.
    【详解】
    (1)点B关于直线x=4的对称点为B′(10,﹣),
    ∴直线AB′解析式为:y=﹣,
    当x=4时,y=,
    故答案为:C
    (2)如图,过点A作直线l的对称点A′,连A′B′,交直线l于点P
    作BH⊥l于点H
    ∵点A和A′关于直线l对称
    ∴∠APG=∠A′PG
    ∵∠BPH=∠A′PG
    ∴∠APG=∠BPH
    ∵∠AGP=∠BHP=90°
    ∴△AGP∽△BHP
    ∴,即,
    ∴mn=2,即m=,
    ∵∠APB=α,AP=AP′,
    ∴∠A=∠A′=,
    在Rt△AGP中,tan

    (3)如图,当点P位于直线AB的右下方,∠APB=60°时,
    点P在以AB为弦,所对圆周为60°,且圆心在AB下方
    若直线y=ax+b(a≠0)与圆相交,设圆与直线y=ax+b(a≠0)的另一个交点为Q
    由对称性可知:∠APQ=∠A′PQ,
    又∠APB=60°
    ∴∠APQ=∠A′PQ=60°
    ∴∠ABQ=∠APQ=60°,∠AQB=∠APB=60°
    ∴∠BAQ=60°=∠AQB=∠ABQ
    ∴△ABQ是等边三角形
    ∵线段AB为定线段
    ∴点Q为定点
    若直线y=ax+b(a≠0)与圆相切,易得P、Q重合
    ∴直线y=ax+b(a≠0)过定点Q
    连OQ,过点A、Q分别作AM⊥y轴,QN⊥y轴,垂足分别为M、N
    ∵A(2,),B(﹣2,﹣)
    ∴OA=OB=
    ∵△ABQ是等边三角形
    ∴∠AOQ=∠BOQ=90°,OQ=,
    ∴∠AOM+∠NOD=90°
    又∵∠AOM+∠MAO=90°,∠NOQ=∠MAO
    ∵∠AMO=∠ONQ=90°
    ∴△AMO∽△ONQ
    ∴,
    ∴,
    ∴ON=2,NQ=3,∴Q点坐标为(3,﹣2)
    设直线BQ解析式为y=kx+b
    将B、Q坐标代入得

    解得

    ∴直线BQ的解析式为:y=﹣,
    设直线AQ的解析式为:y=mx+n,
    将A、Q两点代入,
    解得 ,
    ∴直线AQ的解析式为:y=﹣3,
    若点P与B点重合,则直线PQ与直线BQ重合,此时,b=﹣,
    若点P与点A重合,则直线PQ与直线AQ重合,此时,b=,
    又∵y=ax+b(a≠0),且点P位于AB右下方,
    ∴b<﹣ 且b≠﹣2或b>.
    【点睛】
    本题考查对称性质、相似三角形的判定与性质、根据待定系数法求一次函数解析式及锐角三角函数正切的定义,熟练掌握相关知识是解题关键.
    23、(1)y=;(2)1;
    【解析】
    (1)把点B的坐标代入反比例解析式求得k值,即可求得反比例函数的解析式;(2)根据点B(3,4)、C(m,0)的坐标求得边BC的中点E坐标为(,2),将点E的坐标代入反比例函数的解析式求得m的值,根据平行四边形的面积公式即可求解.
    【详解】
    (1)把B坐标代入反比例解析式得:k=12,
    则反比例函数解析式为y=;
    (2)∵B(3,4),C(m,0),
    ∴边BC的中点E坐标为(,2),
    将点E的坐标代入反比例函数得2=,
    解得:m=9,
    则平行四边形OBCD的面积=9×4=1.
    【点睛】
    本题为反比例函数的综合应用,考查的知识点有待定系数法、平行四边形的性质、中点的求法.在(1)中注意待定系数法的应用,在(2)中用m表示出E点的坐标是解题的关键.
    24、(1)抛物线的解析式是y=x2﹣3x;(2)D点的坐标为(4,﹣4);(3)点P的坐标是()或().
    【解析】
    试题分析:(1)利用待定系数法求二次函数解析式进而得出答案即可;
    (2)首先求出直线OB的解析式为y=x,进而将二次函数以一次函数联立求出交点即可;
    (3)首先求出直线A′B的解析式,进而由△P1OD∽△NOB,得出△P1OD∽△N1OB1,进而求出点P1的坐标,再利用翻折变换的性质得出另一点的坐标.
    试题解析:
    (1)∵抛物线y=ax2+bx(a≠0)经过A(6,0)、B(8,8)
    ∴将A与B两点坐标代入得:,解得:,
    ∴抛物线的解析式是y=x2﹣3x.
    (2)设直线OB的解析式为y=k1x,由点B(8,8),
    得:8=8k1,解得:k1=1
    ∴直线OB的解析式为y=x,
    ∴直线OB向下平移m个单位长度后的解析式为:y=x﹣m,
    ∴x﹣m=x2﹣3x,
    ∵抛物线与直线只有一个公共点,
    ∴△=16﹣2m=0,
    解得:m=8,
    此时x1=x2=4,y=x2﹣3x=﹣4,
    ∴D点的坐标为(4,﹣4)
    (3)∵直线OB的解析式为y=x,且A(6,0),
    ∴点A关于直线OB的对称点A′的坐标是(0,6),
    根据轴对称性质和三线合一性质得出∠A′BO=∠ABO,
    设直线A′B的解析式为y=k2x+6,过点(8,8),
    ∴8k2+6=8,解得:k2= ,
    ∴直线A′B的解析式是y=,
    ∵∠NBO=∠ABO,∠A′BO=∠ABO,
    ∴BA′和BN重合,即点N在直线A′B上,
    ∴设点N(n,),又点N在抛物线y=x2﹣3x上,
    ∴=n2﹣3n, 解得:n1=﹣,n2=8(不合题意,舍去)
    ∴N点的坐标为(﹣,).
    如图1,将△NOB沿x轴翻折,得到△N1OB1,

    则N1(﹣,-),B1(8,﹣8),
    ∴O、D、B1都在直线y=﹣x上.
    ∵△P1OD∽△NOB,△NOB≌△N1OB1,
    ∴△P1OD∽△N1OB1,
    ∴,
    ∴点P1的坐标为().
    将△OP1D沿直线y=﹣x翻折,可得另一个满足条件的点P2(),
    综上所述,点P的坐标是()或().
    【点睛】运用了翻折变换的性质以及待定系数法求一次函数和二次函数解析式以及相似三角形的判定与性质等知识,利用翻折变换的性质得出对应点关系是解题关键.

    相关试卷

    安徽宣城古泉中学2022年中考数学模试卷含解析: 这是一份安徽宣城古泉中学2022年中考数学模试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,当函数y=,已知点A等内容,欢迎下载使用。

    2022年那曲市重点中学毕业升学考试模拟卷数学卷含解析: 这是一份2022年那曲市重点中学毕业升学考试模拟卷数学卷含解析,共18页。试卷主要包含了答题时请按要求用笔,若=1,则符合条件的m有等内容,欢迎下载使用。

    2022年保山市重点中学毕业升学考试模拟卷数学卷含解析: 这是一份2022年保山市重点中学毕业升学考试模拟卷数学卷含解析,共26页。试卷主要包含了考生要认真填写考场号和座位序号,如图,在中,,,,则等于等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map