|试卷下载
搜索
    上传资料 赚现金
    2022年湖北黄冈中考数学最后冲刺模拟试卷含解析
    立即下载
    加入资料篮
    2022年湖北黄冈中考数学最后冲刺模拟试卷含解析01
    2022年湖北黄冈中考数学最后冲刺模拟试卷含解析02
    2022年湖北黄冈中考数学最后冲刺模拟试卷含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年湖北黄冈中考数学最后冲刺模拟试卷含解析

    展开
    这是一份2022年湖北黄冈中考数学最后冲刺模拟试卷含解析,共21页。试卷主要包含了是两个连续整数,若,则分别是.等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,⊙O的直径AB=2,C是弧AB的中点,AE,BE分别平分∠BAC和∠ABC,以E为圆心,AE为半径作扇形EAB,π取3,则阴影部分的面积为(  )

    A.﹣4 B.7﹣4 C.6﹣ D.
    2.二次函数(a、b、c是常数,且a≠0)的图象如图所示,下列结论错误的是( )

    A.4ac<b2 B.abc<0 C.b+c>3a D.a<b
    3.下列二次根式中,的同类二次根式是(  )
    A. B. C. D.
    4.下列运算正确的是(   )
    A.a2·a3﹦a6  B.a3+ a3﹦a6  C.|-a2|﹦a2    D.(-a2)3﹦a6
    5.某自行车厂准备生产共享单车4000辆,在生产完1600辆后,采用了新技术,使得工作效率比原来提高了20%,结果共用了18天完成任务,若设原来每天生产自行车x辆,则根据题意可列方程为( )
    A.+=18 B.=18
    C.+=18 D.=18
    6.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为( )
    A.8或10 B.8 C.10 D.6或12
    7.某工程队开挖一条480米的隧道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖米,那么求时所列方程正确的是( )
    A. B.
    C. D.
    8.是两个连续整数,若,则分别是( ).
    A.2,3 B.3,2 C.3,4 D.6,8
    9.如图是某个几何体的三视图,该几何体是()

    A.三棱柱 B.三棱锥 C.圆柱 D.圆锥
    10.已知△ABC,D是AC上一点,尺规在AB上确定一点E,使△ADE∽△ABC,则符合要求的作图痕迹是(  )
    A. B.
    C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.计算(a3)2÷(a2)3的结果等于________
    12.分解因式x2﹣x=_______________________
    13.甲乙两人8次射击的成绩如图所示(单位:环)根据图中的信息判断,这8次射击中成绩比较稳定的是______(填“甲”或“乙”)

    14.如图是“已知一条直角边和斜边作直角三角形”的尺规作图过程

    已知:线段a、b,
    求作:.使得斜边AB=b,AC=a
    作法:如图.
    (1)作射线AP,截取线段AB=b;
    (2)以AB为直径,作⊙O;
    (3)以点A为圆心,a的长为半径作弧交⊙O于点C;
    (4)连接AC、CB.即为所求作的直角三角形.
    请回答:该尺规作图的依据是______.
    15.如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tan∠OAB=,则AB的长是________.

    16.分式方程-1=的解是x=________.
    三、解答题(共8题,共72分)
    17.(8分)如图,在平面直角坐标系中,点O为坐标原点,已知△ABC三个定点坐标分别为A(﹣4,1),B(﹣3,3),C(﹣1,2).画出△ABC关于x轴对称的△A1B1C1,点A,B,C的对称点分别是点A1、B1、C1,直接写出点A1,B1,C1的坐标:A1(   ,   ),B1(   ,   ),C1(   ,   );画出点C关于y轴的对称点C2,连接C1C2,CC2,C1C,并直接写出△CC1C2的面积是   .

    18.(8分)某区教育局为了解今年九年级学生体育测试情况,随机抽查了某班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:

    说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下
    (1)样本中D级的学生人数占全班学生人数的百分比是 ;
    (2)扇形统计图中A级所在的扇形的圆心角度数是 ;
    (3)请把条形统计图补充完整;
    (4)若该校九年级有500名学生,请你用此样本估计体育测试中A级和B级的学生人数之和.
    19.(8分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线.交BC于点E.求证:BE=EC填空:①若∠B=30°,AC=2,则DE=______;
    ②当∠B=______度时,以O,D,E,C为顶点的四边形是正方形.

    20.(8分)科技改变世界.2017年底,快递分拣机器人从微博火到了朋友圈,据介绍,这些机器人不仅可以自动规划最优路线,将包裹准确地放入相应的格口,还会感应避让障碍物,自动归队取包裹.没电的时候还会自己找充电桩充电.某快递公司启用80台A种机器人、300台B种机器人分拣快递包裹.A,B两种机器人全部投入工作,1小时共可以分拣1.44万件包裹,若全部A种机器人工作3小时,全部B种机器人工作2小时,一共可以分拣3.12万件包裹.
    (1)求两种机器人每台每小时各分拣多少件包裹;
    (2)为了进一步提高效率,快递公司计划再购进A,B两种机器人共200台,若要保证新购进的这批机器人每小时的总分拣量不少于7000件,求最多应购进A种机器人多少台?

    21.(8分)如图,在中,,是边上的高线,平分交于点,经过,两点的交于点,交于点,为的直径.

    (1)求证:是的切线;
    (2)当,时,求的半径.
    22.(10分)如图,A,B,C 三个粮仓的位置如图所示,A 粮仓在 B 粮仓北偏东26°,180 千米处;C 粮仓在 B 粮仓的正东方,A 粮仓的正南方.已知 A,B两个粮仓原有存粮共 450 吨,根据灾情需要,现从 A 粮仓运出该粮仓存粮的支援 C 粮仓,从 B 粮仓运出该粮仓存粮的支援 C 粮仓,这时 A,B 两处粮仓的存粮吨数相等.(tan26°=0.44,cos26°=0.90,tan26°=0.49)
    (1)A,B 两处粮仓原有存粮各多少吨?
    (2)C 粮仓至少需要支援 200 吨粮食,问此调拨计划能满足 C 粮仓的需求吗?
    (3)由于气象条件恶劣,从 B 处出发到 C 处的车队来回都限速以每小时 35 公里的速度匀速行驶,而司机小王的汽车油箱的油量最多可行驶 4 小时,那么小王在途中是否需要加油才能安全的回到 B 地?请你说明理由.

    23.(12分)如图,AD是△ABC的中线,CF⊥AD于点F,BE⊥AD,交AD的延长线于点E,求证:AF+AE=2AD.

    24.已知抛物线,与轴交于两点,与轴交于点,且抛物线的对称轴为直线.
    (1)抛物线的表达式;
    (2)若抛物线与抛物线关于直线对称,抛物线与轴交于点两点(点在点左侧),要使,求所有满足条件的抛物线的表达式.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    ∵O的直径AB=2,
    ∴∠C=90°,
    ∵C是弧AB的中点,
    ∴,
    ∴AC=BC,
    ∴∠CAB=∠CBA=45°,
    ∵AE,BE分别平分∠BAC和∠ABC,
    ∴∠EAB=∠EBA=22.5°,
    ∴∠AEB=180°− (∠BAC+∠CBA)=135°,
    连接EO,

    ∵∠EAB=∠EBA,
    ∴EA=EB,
    ∵OA=OB,
    ∴EO⊥AB,
    ∴EO为Rt△ABC内切圆半径,
    ∴S△ABC=(AB+AC+BC)⋅EO=AC⋅BC,
    ∴EO=−1,
    ∴AE2=AO2+EO2=12+(−1)2=4−2,
    ∴扇形EAB的面积==,△ABE的面积=AB⋅EO=−1,
    ∴弓形AB的面积=扇形EAB的面积−△ABE的面积=,
    ∴阴影部分的面积=O的面积−弓形AB的面积=−()=−4,
    故选:A.
    2、D
    【解析】
    根据二次函数的图象与性质逐一判断即可求出答案.
    【详解】
    由图象可知:△>0,
    ∴b2﹣4ac>0,
    ∴b2>4ac,
    故A正确;
    ∵抛物线开口向上,
    ∴a<0,
    ∵抛物线与y轴的负半轴,
    ∴c<0,
    ∵抛物线对称轴为x=<0,
    ∴b<0,
    ∴abc<0,
    故B正确;
    ∵当x=1时,y=a+b+c>0,
    ∵4a<0,
    ∴a+b+c>4a,
    ∴b+c>3a,
    故C正确;
    ∵当x=﹣1时,y=a﹣b+c>0,
    ∴a﹣b+c>c,
    ∴a﹣b>0,
    ∴a>b,
    故D错误;
    故选D.
    考点:本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程、不等式之间的转换,根的判别式的熟练运用.
    3、C
    【解析】
    先将每个选项的二次根式化简后再判断.
    【详解】
    解:A:,与不是同类二次根式;
    B:被开方数是2x,故与不是同类二次根式;
    C:=,与是同类二次根式;
    D:=2,与不是同类二次根式.
    故选C.
    【点睛】
    本题考查了同类二次根式的概念.
    4、C
    【解析】
    根据同底数幂相乘,底数不变指数相加;合并同类项,只把系数相加减,字母与字母的次数不变;同底数幂相除,底数不变指数相减,对各选项计算后利用排除法求解.
    【详解】
    a2·a3﹦a5,故A项错误;a3+ a3﹦2a3,故B项错误;a3+ a3﹦- a6,故D项错误,选C.
    【点睛】
    本题考查同底数幂加减乘除及乘方,解题的关键是清楚运算法则.
    5、B
    【解析】
    根据前后的时间和是18天,可以列出方程.
    【详解】
    若设原来每天生产自行车x辆,根据前后的时间和是18天,可以列出方程.
    故选B
    【点睛】
    本题考核知识点:分式方程的应用. 解题关键点:根据时间关系,列出分式方程.
    6、C
    【解析】
    试题分析:①4是腰长时,三角形的三边分别为4、4、4,∵4+4=4,∴不能组成三角形,
    ②4是底边时,三角形的三边分别为4、4、4,能组成三角形,周长=4+4+4=4,
    综上所述,它的周长是4.故选C.
    考点:4.等腰三角形的性质;4.三角形三边关系;4.分类讨论.
    7、C
    【解析】
    本题的关键描述语是:“提前1天完成任务”;等量关系为:原计划用时−实际用时=1.
    【详解】
    解:原计划用时为:,实际用时为:.
    所列方程为:,
    故选C.
    【点睛】
    本题考查列分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.
    8、A
    【解析】
    根据,可得答案.
    【详解】
    根据题意,可知,可得a=2,b=1.
    故选A.
    【点睛】
    本题考查了估算无理数的大小,明确是解题关键.
    9、A
    【解析】
    试题分析:观察可得,主视图是三角形,俯视图是两个矩形,左视图是矩形,所以这个几何体是三棱柱,故选A.
    考点:由三视图判定几何体.
    10、A
    【解析】
    以DA为边、点D为顶点在△ABC内部作一个角等于∠B,角的另一边与AB的交点即为所求作的点.
    【详解】
    如图,点E即为所求作的点.故选:A.

    【点睛】
    本题主要考查作图-相似变换,根据相似三角形的判定明确过点D作一角等于∠B或∠C,并熟练掌握做一个角等于已知角的作法式解题的关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、1
    【解析】
    根据幂的乘方, 底数不变, 指数相乘; 同底数幂的除法, 底数不变, 指数相减进行计算即可.
    【详解】
    解:原式=
    【点睛】
    本题主要考查幂的乘方和同底数幂的除法,熟记法则是解决本题的关键, 在计算中不要与其他法则相混淆. 幂的乘方, 底数不变,指数相乘; 同底数幂的除法, 底数不变, 指数相减.
    12、x(x-1)
    【解析】
    x2﹣x
    = x(x-1).
    故答案是:x(x-1).
    13、甲
    【解析】
    由图表明乙这8次成绩偏离平均数大,即波动大,而甲这8次成绩,分布比较集中,各数据偏离平均小,方差小,
    则S2甲 故答案为甲.
    14、等圆的半径相等,直径所对的圆周角是直角,三角形定义
    【解析】
    根据圆周角定理可判断△ABC为直角三角形.
    【详解】
    根据作图得AB为直径,则利用圆周角定理可判断∠ACB=90°,从而得到△ABC满足条件.
    故答案为:等圆的半径相等,直径所对的圆周角是直角,三角形定义.
    【点睛】
    本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了圆周角定理.
    15、8
    【解析】
    如图,连接OC,在在Rt△ACO中,由tan∠OAB=,求出AC即可解决问题.
    【详解】
    解:如图,连接OC.

    ∵AB是⊙O切线,
    ∴OC⊥AB,AC=BC,
    在Rt△ACO中,∵∠ACO=90°,OC=OD=2
    tan∠OAB=,
    ∴,
    ∴AC=4,
    ∴AB=2AC=8,
    故答案为8
    【点睛】
    本题考查切线的性质、垂径定理、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形,属于中考常考题型.
    16、-5
    【解析】
    两边同时乘以(x+3)(x-3),得
    6-x2+9=-x2-3x,
    解得:x=-5,
    检验:当x=-5时,(x+3)(x-3)≠0,所以x=-5是分式方程的解,
    故答案为:-5.
    【点睛】本题考查了解分式方程,解题的关键是方程两边同时乘以最简公分母,切记要进行检验.

    三、解答题(共8题,共72分)
    17、(1)﹣1、﹣1,﹣3、﹣3,﹣1、﹣2;(2)见解析,1.
    【解析】
    (1)分别作出点A、B、C关于x轴的对称点,再顺次连接可得;
    (2)作出点C关于y轴的对称点,然后连接得到三角形,根据面积公式计算可得.
    【详解】
    (1)如图所示,△A1B1C1即为所求.

    A1(﹣1,﹣1)B1(﹣3,﹣3),C1(﹣1,﹣2).
    故答案为:﹣1、﹣1、﹣3、﹣3、﹣1、﹣2;
    (2)如图所示,△CC1C2的面积是2×1=1.
    故答案为:1.
    【点睛】
    本题考查了作图﹣轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质.
    18、(1)10%; (2)72; (3)5,见解析; (4)330.
    【解析】
    解:(1)根据题意得:
    D级的学生人数占全班人数的百分比是:
    1-20%-46%-24%=10%;
    (2)A级所在的扇形的圆心角度数是:20%×360°=72°;
    (3)∵A等人数为10人,所占比例为20%,
    ∴抽查的学生数=10÷20%=50(人),
    ∴D级的学生人数是50×10%=5(人),
    补图如下:

    (4)根据题意得:
    体育测试中A级和B级的学生人数之和是:500×(20%+46%)=330(名),
    答:体育测试中A级和B级的学生人数之和是330名.
    【点睛】
    本题考查统计的知识,要求考生会识别条形统计图和扇形统计图.
    19、(1)见解析;(2)①3;②1.
    【解析】
    (1)证出EC为⊙O的切线;由切线长定理得出EC=ED,再求得EB=ED,即可得出结论;
    (2)①由含30°角的直角三角形的性质得出AB,由勾股定理求出BC,再由直角三角形斜边上的中线性质即可得出DE;
    ②由等腰三角形的性质,得到∠ODA=∠A=1°,于是∠DOC=90°然后根据有一组邻边相等的矩形是正方形,即可得到结论.
    【详解】
    (1)证明:连接DO.

    ∵∠ACB=90°,AC为直径,
    ∴EC为⊙O的切线;
    又∵ED也为⊙O的切线,
    ∴EC=ED,
    又∵∠EDO=90°,
    ∴∠BDE+∠ADO=90°,
    ∴∠BDE+∠A=90°
    又∵∠B+∠A=90°,
    ∴∠BDE=∠B,
    ∴BE=ED,
    ∴BE=EC;
    (2)解:①∵∠ACB=90°,∠B=30°,AC=2,
    ∴AB=2AC=4,
    ∴BC==6,
    ∵AC为直径,
    ∴∠BDC=∠ADC=90°,
    由(1)得:BE=EC,
    ∴DE=BC=3,
    故答案为3;
    ②当∠B=1°时,四边形ODEC是正方形,理由如下:
    ∵∠ACB=90°,
    ∴∠A=1°,
    ∵OA=OD,
    ∴∠ADO=1°,
    ∴∠AOD=90°,
    ∴∠DOC=90°,
    ∵∠ODE=90°,
    ∴四边形DECO是矩形,
    ∵OD=OC,
    ∴矩形DECO是正方形.
    故答案为1.
    【点睛】
    本题考查了圆的切线性质、解直角三角形的知识、切线长定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
    20、(1)A种机器人每台每小时各分拣30件包裹,B种机器人每台每小时各分拣40件包裹(2)最多应购进A种机器人100台
    【解析】
    (1)A种机器人每台每小时各分拣x件包裹,B种机器人每台每小时各分拣y件包裹,根据题意列方程组即可得到结论;
    (2)设最多应购进A种机器人a台,购进B种机器人(200−a)台,由题意得,根据题意两不等式即可得到结论.
    【详解】
    (1)A种机器人每台每小时各分拣x件包裹,B种机器人每台每小时各分拣y件包裹,
    由题意得,,
    解得,,
    答:A种机器人每台每小时各分拣30件包裹,B种机器人每台每小时各分拣40件包裹;
    (2)设最多应购进A种机器人a台,购进B种机器人(200﹣a)台,
    由题意得,30a+40(200﹣a)≥7000,
    解得:a≤100,则最多应购进A种机器人100台.
    【点睛】
    本题考查了二元一次方程组,一元一次不等式的应用,正确的理解题意是解题的关键.
    21、(1)见解析;(2)的半径是.
    【解析】
    (1)连结,易证,由于是边上的高线,从而可知,所以是的切线.
    (2)由于,从而可知,由,可知:,易证,所以,再证明,所以,从而可求出.
    【详解】
    解:(1)连结.
    ∵平分,
    ∴,又,
    ∴,
    ∴,
    ∵是边上的高线,
    ∴,
    ∴,
    ∴是的切线.
    (2)∵,
    ∴,,
    ∴是中点,
    ∴,
    ∵,
    ∴,
    ∵,,
    ∴,
    ∴,
    又∵,
    ∴,
    在中,

    ∴,
    ∴,

    而,
    ∴,
    ∴,
    ∴的半径是.

    【点睛】
    本题考查圆的综合问题,涉及锐角三角函数,相似三角形的判定与性质,等腰三角形的性质等知识,综合程度较高,需要学生综合运用知识的能力.
    22、(1)A、B 两处粮仓原有存粮分别是 270,1 吨;(2)此次调拨能满足 C 粮仓需求;(3)小王途中须加油才能安全回到 B 地.
    【解析】
    (1)由题意可知要求A,B两处粮仓原有存粮各多少吨需找等量关系,即A处存粮+B处存粮=450吨,A处存粮的五分之二=B处存粮的五分之三,据等量关系列方程组求解即可;
    (2)分别求出A处和B处支援C处的粮食,将其加起来与200吨比较即可;
    (3)由题意可知由已知可得△ABC中∠A=26°∠ACB=90°且AB=1Km,sin∠BAC=,要求BC的长,可以运用三角函数解直角三角形.
    【详解】
    (1)设A,B两处粮仓原有存粮x,y吨
    根据题意得:
    解得:x=270,y=1.
    答:A,B两处粮仓原有存粮分别是270,1吨.
    (2)A粮仓支援C粮仓的粮食是×270=162(吨),
    B粮仓支援C粮仓的粮食是×1=72(吨),
    A,B两粮仓合计共支援C粮仓粮食为162+72=234(吨).
    ∵234>200,
    ∴此次调拨能满足C粮仓需求.
    (3)如图,

    根据题意知:∠A=26°,AB=1千米,∠ACB=90°.
    在Rt△ABC中,sin∠BAC=,
    ∴BC=AB•sin∠BAC=1×0.44=79.2.
    ∵此车最多可行驶4×35=140(千米)<2×79.2,
    ∴小王途中须加油才能安全回到B地.
    【点睛】
    求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
    23、证明见解析.
    【解析】
    由题意易用角角边证明△BDE≌△CDF,得到DF=DE,再用等量代换的思想用含有AE和AF的等式表示AD的长.
    【详解】
    证明:∵CF⊥AD于,BE⊥AD,
    ∴BE∥CF,∠EBD=∠FCD,
    又∵AD是△ABC的中线,
    ∴BD=CD,
    ∴在△BED与△CFD中,

    ∴△△BED≌△CFD(AAS)
    ∴ED=FD,
    又∵AD=AF+DF①,
         AD=AE-DE②,
    由①+②得:AF+AE=2AD.
    【点睛】
    该题考察了三角形全等的证明,利用全等三角形的性质进行对应边的转化.
    24、(1);(2).
    【解析】
    (1)根据待定系数法即可求解;
    (2)根据题意知,根据三角形面积公式列方程即可求解.
    【详解】
    (1)根据题意得:,
    解得:,
    抛物线的表达式为:;
    (2)∵抛物线与抛物线关于直线对称,抛物线的对称轴为直线
    ∴抛物线的对称轴为直线,
    ∵抛物线与轴交于点两点且点在点左侧,
    ∴的横坐标为:
    ∴,
    令,则,
    解得:,
    令,则,
    ∴点的坐标分别为,,点的坐标为,
    ∴,
    ∵,
    ∴,即,
    解得:或,
    ∵抛物线与抛物线关于直线对称,抛物线的对称轴为直线,
    ∴抛物线的表达式为或.
    【点睛】
    本题属于二次函数综合题,涉及了待定系数法求函数解析式、一元二次方程的解及三角形的面积,第(2)问的关键是得到抛物线的对称轴为直线.

    相关试卷

    2022年湖北省襄阳市襄州区中考数学最后冲刺模拟试卷含解析: 这是一份2022年湖北省襄阳市襄州区中考数学最后冲刺模拟试卷含解析,共18页。

    2022年湖北省舞阳中学中考数学最后冲刺模拟试卷含解析: 这是一份2022年湖北省舞阳中学中考数学最后冲刺模拟试卷含解析,共23页。试卷主要包含了关于二次函数,下列说法正确的是等内容,欢迎下载使用。

    2022年湖北省荆门市沙洋县中考数学最后冲刺模拟试卷含解析: 这是一份2022年湖北省荆门市沙洋县中考数学最后冲刺模拟试卷含解析,共16页。试卷主要包含了考生必须保证答题卡的整洁,下列各数中,比﹣1大1的是,把a•的根号外的a移到根号内得等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map