2022届浙江省温州市苍南县六校中考联考数学试卷含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,在平面直角坐标系中,△ABC与△A1B1C1是以点P为位似中心的位似图形,且顶点都在格点上,则点P的坐标为( )
A.(﹣4,﹣3) B.(﹣3,﹣4) C.(﹣3,﹣3) D.(﹣4,﹣4)
2.如图,四边形ABCD是正方形,点P,Q分别在边AB,BC的延长线上且BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②△OAE∽△OPA;③当正方形的边长为3,BP=1时,cos∠DFO=,其中正确结论的个数是( )
A.0 B.1 C.2 D.3
3.解分式方程﹣3=时,去分母可得( )
A.1﹣3(x﹣2)=4 B.1﹣3(x﹣2)=﹣4
C.﹣1﹣3(2﹣x)=﹣4 D.1﹣3(2﹣x)=4
4.某校航模小分队年龄情况如表所示,则这12名队员年龄的众数、中位数分别是( )
年龄(岁)
12
13
14
15
16
人数
1
2
2
5
2
A.2,14岁 B.2,15岁 C.19岁,20岁 D.15岁,15岁
5.如图,四边形ABCD是边长为1的正方形,动点E、F分别从点C,D出发,以相同速度分别沿CB,DC运动(点E到达C时,两点同时停止运动).连接AE,BF交于点P,过点P分别作PM∥CD,PN∥BC,则线段MN的长度的最小值为( )
A. B. C. D.1
6.如图,小刚从山脚A出发,沿坡角为的山坡向上走了300米到达B点,则小刚上升了( )
A.米 B.米 C.米 D.米
7.将抛物线向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )
A. B. C. D.
8.下列各组数中,互为相反数的是( )
A.﹣2 与2 B.2与2 C.3与 D.3与3-
9.某班要推选学生参加学校的“诗词达人”比赛,有7名学生报名参加班级选拔赛,他们的选拔赛成绩各不相同,现取其中前3名参加学校比赛.小红要判断自己能否参加学校比赛,在知道自己成绩的情况下,还需要知道这7名学生成绩的( )
A.众数 B.中位数 C.平均数 D.方差
10.若关于x的一元二次方程x2﹣2x+m=0没有实数根,则实数m的取值是( )
A.m<1 B.m>﹣1 C.m>1 D.m<﹣1
11.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为( )
A.9人 B.10人 C.11人 D.12人
12.一元二次方程(x+2017)2=1的解为( )
A.﹣2016,﹣2018 B.﹣2016 C.﹣2018 D.﹣2017
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…、6点的标记,掷一次骰子,向上的一面出现的点数是素数的概率是_____.
14.如图,分别以正六边形相间隔的3个顶点为圆心,以这个正六边形的边长为半径作扇形得到 “三叶草”图案,若正六边形的边长为3,则“三叶草”图案中阴影部分的面积为_____(结果保留π)
15.若二次函数y=-x2-4x+k的最大值是9,则k=______.
16.如果两个相似三角形的面积的比是4:9,那么它们对应的角平分线的比是_____.
17.若x=-1, 则x2+2x+1=__________.
18.四张背面完全相同的卡片上分别写有0、、、、四个实数,如果将卡片字面朝下随意放在桌子上,任意取一张,那么抽到有理数的概率为___________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)已知开口向下的抛物线y=ax2-2ax+2与y轴的交点为A,顶点为B,对称轴与x轴的交点为C,点A与点D关于对称轴对称,直线BD与x轴交于点M,直线AB与直线OD交于点N.
(1)求点D的坐标.
(2)求点M的坐标(用含a的代数式表示).
(3)当点N在第一象限,且∠OMB=∠ONA时,求a的值.
20.(6分)如图,AB=AD,AC=AE,BC=DE,点E在BC上.
求证:△ABC≌△ADE;(2)求证:∠EAC=∠DEB.
21.(6分)如图,矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线经过A、C两点,与AB边交于点D.
(1)求抛物线的函数表达式;
(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.
①求S关于m的函数表达式,并求出m为何值时,S取得最大值;
②当S最大时,在抛物线的对称轴l上若存在点F,使△FDQ为直角三角形,请直接写出所有符合条件的F的坐标;若不存在,请说明理由.
22.(8分)已知,抛物线L:y=x2+bx+c与x轴交于点A和点B(-3,0),与y轴交于点C(0,3).
(1)求抛物线L的顶点坐标和A点坐标.
(2)如何平移抛物线L得到抛物线L1,使得平移后的抛物线L1的顶点与抛物线L的顶点关于原点对称?
(3)将抛物线L平移,使其经过点C得到抛物线L2,点P(m,n)(m>0)是抛物线L2上的一点,是否存在点P,使得△PAC为等腰直角三角形,若存在,请直接写出抛物线L2的表达式,若不存在,请说明理由.
23.(8分)某学校为增加体育馆观众坐席数量,决定对体育馆进行施工改造.如图,为体育馆改造的截面示意图.已知原座位区最高点A到地面的铅直高度AC长度为15米,原坡面AB的倾斜角∠ABC为45°,原坡脚B与场馆中央的运动区边界的安全距离BD为5米.如果按照施工方提供的设计方案施工,新座位区最高点E到地面的铅直高度EG长度保持15米不变,使A、E两点间距离为2米,使改造后坡面EF的倾斜角∠EFG为37°.若学校要求新坡脚F需与场馆中央的运动区边界的安全距离FD至少保持2.5米(即FD≥2.5),请问施工方提供的设计方案是否满足安全要求呢?请说明理由.(参考数据:sin37°≈,tan37°≈)
24.(10分)如图1,正方形ABCD的边长为4,把三角板的直角顶点放置BC中点E处,三角板绕点E旋转,三角板的两边分别交边AB、CD于点G、F.
(1)求证:△GBE∽△GEF.
(2)设AG=x,GF=y,求Y关于X的函数表达式,并写出自变量取值范围.
(3)如图2,连接AC交GF于点Q,交EF于点P.当△AGQ与△CEP相似,求线段AG的长.
25.(10分)计算:
26.(12分)已知顶点为A的抛物线y=a(x-)2-2经过点B(-,2),点C(,2).
(1)求抛物线的表达式;
(2)如图1,直线AB与x轴相交于点M,与y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;
(3)如图2,点Q是折线A-B-C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN′,若点N′落在x轴上,请直接写出Q点的坐标.
27.(12分)如图,在中,,且,,为的中点,于点,连结,.
(1)求证:;
(2)当为何值时,的值最大?并求此时的值.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
延长A1A、B1B和C1C,从而得到P点位置,从而可得到P点坐标.
【详解】
如图,点P的坐标为(-4,-3).
故选A.
【点睛】
本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.
2、C
【解析】
由四边形ABCD是正方形,得到AD=BC, 根据全等三角形的性质得到∠P=∠Q,根据余角的性质得到AQ⊥DP;故①正确;根据勾股定理求出直接用余弦可求出.
【详解】
详解:∵四边形ABCD是正方形,
∴AD=BC,
∵BP=CQ,
∴AP=BQ,
在△DAP与△ABQ中,
∴△DAP≌△ABQ,
∴∠P=∠Q,
∵
∴
∴
∴AQ⊥DP;
故①正确;
②无法证明,故错误.
∵BP=1,AB=3,
∴
∴ 故③正确,
故选C.
【点睛】
考查正方形的性质,三角形全等的判定与性质,勾股定理,锐角三角函数等,综合性比较强,对学生要求较高.
3、B
【解析】
方程两边同时乘以(x-2),转化为整式方程,由此即可作出判断.
【详解】
方程两边同时乘以(x-2),得
1﹣3(x﹣2)=﹣4,
故选B.
【点睛】
本题考查了解分式方程,利用了转化的思想,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.
4、D
【解析】
众数是一组数据中出现次数最多的数据,注意众数可以不只一个;
找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
【详解】
解:数据1出现了5次,最多,故为众数为1;
按大小排列第6和第7个数均是1,所以中位数是1.
故选D.
【点睛】
本题主要考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.
5、B
【解析】
分析:由于点P在运动中保持∠APD=90°,所以点P的路径是一段以AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,再由勾股定理可得QC的长,再求CP即可.
详解: 由于点P在运动中保持∠APD=90°, ∴点P的路径是一段以AD为直径的弧,
设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,
在Rt△QDC中,QC=, ∴CP=QC-QP=,故选B.
点睛:本题主要考查的是圆的相关知识和勾股定理,属于中等难度的题型.解决这个问题的关键是根据圆的知识得出点P的运动轨迹.
6、A
【解析】
利用锐角三角函数关系即可求出小刚上升了的高度.
【详解】
在Rt△AOB中,∠AOB=90°,AB=300米,
BO=AB•sinα=300sinα米.
故选A.
【点睛】
此题主要考查了解直角三角形的应用,根据题意构造直角三角形,正确选择锐角三角函数得出AB,BO的关系是解题关键.
7、A
【解析】
直接根据“上加下减,左加右减”的原则进行解答即可.
【详解】
将抛物线向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为,故答案选A.
8、A
【解析】
根据只有符号不同的两数互为相反数,可直接判断.
【详解】
-2与2互为相反数,故正确;
2与2相等,符号相同,故不是相反数;
3与互为倒数,故不正确;
3与3相同,故不是相反数.
故选:A.
【点睛】
此题主要考查了相反数,关键是观察特点是否只有符号不同,比较简单.
9、B
【解析】
由于总共有7个人,且他们的成绩互不相同,第4的成绩是中位数,要判断自己能否参加学校比赛,只需知道中位数即可.
【详解】
由于总共有7个人,且他们的成绩互不相同,第4的成绩是中位数,要判断自己能否参加学校比赛,故应知道中位数是多少.
故选B.
【点睛】
本题考查了统计的有关知识,掌握平均数、中位数、众数、方差的意义是解题的关键.
10、C
【解析】
试题解析:关于的一元二次方程没有实数根,
,
解得:
故选C.
11、C
【解析】
设参加酒会的人数为x人,根据每两人都只碰一次杯,如果一共碰杯55次,列出一元二次方程,解之即可得出答案.
【详解】
设参加酒会的人数为x人,依题可得:
x(x-1)=55,
化简得:x2-x-110=0,
解得:x1=11,x2=-10(舍去),
故答案为C.
【点睛】
考查了一元二次方程的应用,解题的关键是根据题中的等量关系列出方程.
12、A
【解析】
利用直接开平方法解方程.
【详解】
(x+2017)2=1
x+2017=±1,
所以x1=-2018,x2=-1.
故选A.
【点睛】
本题考查了解一元二次方程-直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
先判断掷一次骰子,向上的一面的点数为素数的情况,再利用概率公式求解即可.
【详解】
解:∵掷一次这枚骰子,向上的一面的点数为素数的有2,3,5共3种情况,
∴掷一次这枚骰子,向上的一面的点数为素数的概率是:.
故答案为:.
【点睛】
本题考查了求简单事件的概率,根据题意判断出素数的个数是解题的关键.
14、18π
【解析】
根据“三叶草”图案中阴影部分的面积为三个扇形面积的和,利用扇形面积公式解答即可.
【详解】
解:∵正六边形的内角为=120°,
∴扇形的圆心角为360°−120°=240°,
∴“三叶草”图案中阴影部分的面积为=18π,
故答案为18π.
【点睛】
此题考查正多边形与圆,关键是根据“三叶草”图案中阴影部分的面积为三个扇形面积的和解答.
15、5
【解析】y=−(x−2)2+4+k,
∵二次函数y=−x2−4x+k的最大值是9,
∴4+k=9,解得:k=5,
故答案为:5.
16、2:1
【解析】
先根据相似三角形面积的比是4:9,求出其相似比是2:1,再根据其对应的角平分线的比等于相似比,可知它们对应的角平分线比是2:1.
故答案为2:1.
点睛:本题考查的是相似三角形的性质,即相似三角形对应边的比、对应高线的比、对应角平分线的比、周长的比都等于相似比;面积的比等于相似比的平方.
17、2
【解析】
先利用完全平方公式对所求式子进行变形,然后代入x的值进行计算即可.
【详解】
∵x=-1,
∴x2+2x+1=(x+1)2=(-1+1)2=2,
故答案为:2.
【点睛】
本题考查了代数式求值,涉及了因式分解,二次根式的性质等,熟练掌握相关知识是解题的关键.
18、
【解析】
根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.
【详解】
∵在0.、、、这四个实数种,有理数有0.、、这3个,
∴抽到有理数的概率为,
故答案为.
【点睛】
此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)D(2,2);(2);(3)
【解析】
(1)令x=0求出A的坐标,根据顶点坐标公式或配方法求出顶点B的坐标、对称轴直线,根据点A与点D关于对称轴对称,确定D点坐标.
(2)根据点B、D的坐标用待定系数法求出直线BD的解析式,令y=0,即可求得M点的坐标.
(3)根据点A、B的坐标用待定系数法求出直线AB的解析式,求直线OD的解析式,进而求出交点N的坐标,得到ON的长.过A点作AE⊥OD,可证△AOE为等腰直角三角形,根据OA=2,可求得AE、OE的长,表示出EN的长.根据tan∠OMB=tan∠ONA,得到比例式,代入数值即可求得a的值.
【详解】
(1)当x=0时,,
∴A点的坐标为(0,2)
∵
∴顶点B的坐标为:(1,2-a),对称轴为x= 1,
∵点A与点D关于对称轴对称
∴D点的坐标为:(2,2)
(2)设直线BD的解析式为:y=kx+b
把B(1,2-a)D(2,2)代入得:
,解得:
∴直线BD的解析式为:y=ax+2-2a
当y=0时,ax+2-2a=0,解得:x=
∴M点的坐标为:
(3)由D(2,2)可得:直线OD解析式为:y=x
设直线AB的解析式为y=mx+n,代入A(0,2)B(1,2-a)可得:
解得:
∴直线AB的解析式为y= -ax+2
联立成方程组: ,解得:
∴N点的坐标为:()
ON=()
过A点作AE⊥OD于E点,则△AOE为等腰直角三角形.
∵OA=2
∴OE=AE=,EN=ON-OE=()-=)
∵M,C(1,0), B(1,2-a)
∴MC=,BE=2-a
∵∠OMB=∠ONA
∴tan∠OMB=tan∠ONA
∴,即
解得:a=或
∵抛物线开口向下,故a<0,
∴ a=舍去,
【点睛】
本题是一道二次函数与一次函数及三角函数综合题,掌握并灵活应用二次函数与一次函数的图象与性质,以及构建直角三角形借助点的坐标使用相等角的三角函数是解题的关键.
20、(1)详见解析;(2)详见解析.
【解析】
(1)用“SSS”证明即可;
(2)借助全等三角形的性质及角的和差求出∠DAB=∠EAC,再利用三角形内角和定理求出∠DEB=∠DAB,即可说明∠EAC=∠DEB.
【详解】
解:(1)在△ABC和△ADE中
∴△ABC≌△ADE(SSS);
(2)由△ABC≌△ADE,
则∠D=∠B,∠DAE=∠BAC.
∴∠DAE﹣∠ABE=∠BAC﹣∠BAE,即∠DAB=∠EAC.
设AB和DE交于点O,
∵∠DOA=BOE,∠D=∠B,
∴∠DEB=∠DAB.
∴∠EAC=∠DEB.
【点睛】
本题主要考查了全等三角形的判定和性质,解题的关键是利用全等三角形的性质求出相等的角,体现了转化思想的运用.
21、(1);(2)①,当m=5时,S取最大值;②满足条件的点F共有四个,坐标分别为,,,,
【解析】
(1)将A、C两点坐标代入抛物线y=-x2+bx+c,即可求得抛物线的解析式;
(2)①先用m表示出QE的长度,进而求出三角形的面积S关于m的函数;
②直接写出满足条件的F点的坐标即可,注意不要漏写.
【详解】
解:(1)将A、C两点坐标代入抛物线,得 ,
解得: ,
∴抛物线的解析式为y=﹣x2+x+8;
(2)①∵OA=8,OC=6,
∴AC= =10,
过点Q作QE⊥BC与E点,则sin∠ACB = = =,
∴ =,
∴QE=(10﹣m),
∴S=•CP•QE=m×(10﹣m)=﹣m2+3m;
②∵S=•CP•QE=m×(10﹣m)=﹣m2+3m=﹣(m﹣5)2+,
∴当m=5时,S取最大值;
在抛物线对称轴l上存在点F,使△FDQ为直角三角形,
∵抛物线的解析式为y=﹣x2+x+8的对称轴为x=,
D的坐标为(3,8),Q(3,4),
当∠FDQ=90°时,F1(,8),
当∠FQD=90°时,则F2(,4),
当∠DFQ=90°时,设F(,n),
则FD2+FQ2=DQ2,
即+(8﹣n)2++(n﹣4)2=16,
解得:n=6± ,
∴F3(,6+),F4(,6﹣),
满足条件的点F共有四个,坐标分别为
F1(,8),F2(,4),F3(,6+),F4(,6﹣).
【点睛】
本题考查二次函数的综合应用能力,其中涉及到的知识点有抛物线的解析式的求法抛物线的最值等知识点,是各地中考的热点和难点,解题时注意数形结合数学思想的运用,同学们要加强训练,属于中档题.
22、(1)顶点(-2,-1) A (-1,0); (2)y=(x-2)2+1; (3) y=x2-x+3, ,y=x2-4x+3, .
【解析】
(1)将点B和点C代入求出抛物线L即可求解.
(2)将抛物线L化顶点式求出顶点再根据关于原点对称求出即可求解.
(3)将使得△PAC为等腰直角三角形,作出所有点P的可能性,求出代入即可求解.
【详解】
(1)将点B(-3,0),C(0,3)代入抛物线得:
,解得,则抛物线.
抛物线与x轴交于点A,
,,A (-1,0),
抛物线L化顶点式可得,由此可得顶点坐标顶点(-2,-1).
(2)抛物线L化顶点式可得,由此可得顶点坐标顶点(-2,-1)
抛物线L1的顶点与抛物线L的顶点关于原点对称,
对称顶点坐标为(2,1),
即将抛物线向右移4个单位,向上移2个单位.
(3) 使得△PAC为等腰直角三角形,作出所有点P的可能性.
是等腰直角三角形
,
,
,
,
,
求得.,
同理得,,,
由题意知抛物线并将点代入得:.
【点睛】
本题主要考查抛物线综合题,讨论出P点的所有可能性是解题关键.
23、不满足安全要求,理由见解析.
【解析】
在Rt△ABC中,由∠ACB=90°,AC=15m,∠ABC=45°可求得BC=15m;在Rt△EGD中,由∠EGD=90°,EG=15m,∠EFG=37°,可解得GF=20m;通过已知条件可证得四边形EACG是矩形,从而可得GC=AE=2m;这样可解得:DF=GC+BC+BD-GF=2+15+5-20=2<2.5,由此可知:“设计方案不满足安全要求”.
【详解】
解:施工方提供的设计方案不满足安全要求,理由如下:
在Rt△ABC中,AC=15m,∠ABC=45°,
∴BC==15m.
在Rt△EFG中,EG=15m,∠EFG=37°,
∴GF=≈=20m.
∵EG=AC=15m,AC⊥BC,EG⊥BC,
∴EG∥AC,
∴四边形EGCA是矩形,
∴GC=EA=2m,
∴DF=GC+BC+BD-GF=2+15+5-20=2<2.5.
∴施工方提供的设计方案不满足安全要求.
24、(1)见解析;(2)y=4﹣x+(0≤x≤3);(3)当△AGQ与△CEP相似,线段AG的长为2或4﹣.
【解析】
(1)先判断出△BEF'≌△CEF,得出BF'=CF,EF'=EF,进而得出∠BGE=∠EGF,即可得出结论;
(2)先判断出△BEG∽△CFE进而得出CF=
,即可得出结论;
(3)分两种情况,①△AGQ∽△CEP时,判断出∠BGE=60°,即可求出BG;
②△AGQ∽△CPE时,判断出EG∥AC,进而得出△BEG∽△BCA即可得出BG,即可得出结论.
【详解】
(1)如图1,延长FE交AB的延长线于F',
∵点E是BC的中点,
∴BE=CE=2,
∵四边形ABCD是正方形,
∴AB∥CD,
∴∠F'=∠CFE,
在△BEF'和△CEF中,
,
∴△BEF'≌△CEF,
∴BF'=CF,EF'=EF,
∵∠GEF=90°,
∴GF'=GF,
∴∠BGE=∠EGF,
∵∠GBE=∠GEF=90°,
∴△GBE∽△GEF;
(2)∵∠FEG=90°,
∴∠BEG+∠CEF=90°,
∵∠BEG+∠BGE=90°,
∴∠BGE=∠CEF,
∵∠EBG=∠C=90°,
∴△BEG∽△CFE,
∴,
由(1)知,BE=CE=2,
∵AG=x,
∴BG=4﹣x,
∴,
∴CF=,
由(1)知,BF'=CF=,
由(1)知,GF'=GF=y,
∴y=GF'=BG+BF'=4﹣x+
当CF=4时,即:=4,
∴x=3,(0≤x≤3),
即:y关于x的函数表达式为y=4﹣x+(0≤x≤3);
(3)∵AC是正方形ABCD的对角线,
∴∠BAC=∠BCA=45°,
∵△AGQ与△CEP相似,
∴①△AGQ∽△CEP,
∴∠AGQ=∠CEP,
由(2)知,∠CEP=∠BGE,
∴∠AGQ=∠BGE,
由(1)知,∠BGE=∠FGE,
∴∠AGQ=∠BGQ=∠FGE,
∴∠AGQ+∠BGQ+∠FGE=180°,
∴∠BGE=60°,
∴∠BEG=30°,
在Rt△BEG中,BE=2,
∴BG=,
∴AG=AB﹣BG=4﹣,
②△AGQ∽△CPE,
∴∠AQG=∠CEP,
∵∠CEP=∠BGE=∠FGE,
∴∠AQG=∠FGE,
∴EG∥AC,
∴△BEG∽△BCA,
∴,
∴,
∴BG=2,
∴AG=AB﹣BG=2,
即:当△AGQ与△CEP相似,线段AG的长为2或4﹣.
【点睛】
本题考核知识点:相似三角形综合. 解题关键点:熟记相似三角形的判定和性质.
25、-1
【解析】
先化简二次根式、计算负整数指数幂、分母有理化、去绝对值符号,再合并同类二次根式即可得.
【详解】
原式=1﹣4﹣+1﹣=﹣1.
【点睛】
本题考查了实数的混合运算,熟练掌握二次根式的性质、分母有理化、负整数指数幂的意义、绝对值的意义是解答本题的关键.
26、 (1) y=(x-)2-2;(2)△POE的面积为或;(3)点Q的坐标为(-,)或(-,2)或(,2).
【解析】
(1)将点B坐标代入解析式求得a的值即可得;
(2)由∠OPM=∠MAF知OP∥AF,据此证△OPE∽△FAE得=
==,即OP=FA,设点P(t,-2t-1),列出关于t的方程解之可得;
(3)分点Q在AB上运动、点Q在BC上运动且Q在y轴左侧、点Q在BC上运动且点Q在y轴右侧这三种情况分类讨论即可得.
【详解】
解:(1)把点B(-,2)代入y=a(x-)2-2,
解得a=1,
∴抛物线的表达式为y=(x-)2-2,
(2)由y=(x-)2-2知A(,-2),
设直线AB表达式为y=kx+b,代入点A,B的坐标得,
解得,
∴直线AB的表达式为y=-2x-1,
易求E(0,-1),F(0,-),M(-,0),
若∠OPM=∠MAF,
∴OP∥AF,
∴△OPE∽△FAE,
∴,
∴OP=FA= ,
设点P(t,-2t-1),则,
解得t1=-,t2=-,
由对称性知,当t1=-时,也满足∠OPM=∠MAF,
∴t1=-,t2=-都满足条件,
∵△POE的面积=OE·|t|,
∴△POE的面积为或;
(3)如图,若点Q在AB上运动,过N′作直线RS∥y轴,交QR于点R,交NE的延长线于点S,
设Q(a,-2a-1),则NE=-a,QN=-2a.
由翻折知QN′=QN=-2a,N′E=NE=-a,
由∠QN′E=∠N=90°易知△QRN′∽△N′SE,
∴==,即===2,
∴QR=2,ES= ,
由NE+ES=NS=QR可得-a+=2,
解得a=-,
∴Q(-,),
如图,若点Q在BC上运动,且Q在y轴左侧,过N′作直线RS∥y轴,交BC于点R,交NE的延长线于点S.
设NE=a,则N′E=a.
易知RN′=2,SN′=1,QN′=QN=3,
∴QR=,SE=-a.
在Rt△SEN′中,(-a)2+12=a2,
解得a=,
∴Q(-,2),
如图,若点Q在BC上运动,且点Q在y轴右侧,过N′作直线RS∥y轴,交BC于点R,交NE的延长线于点S.
设NE=a,则N′E=a.
易知RN′=2,SN′=1,QN′=QN=3,
∴QR=,SE=-a.
在Rt△SEN′中,(-a)2+12=a2,
解得a=,
∴Q(,2).
综上,点Q的坐标为(-,)或(-,2)或(,2).
【点睛】
本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、相似三角形的判定与性质、翻折变换的性质及勾股定理等知识点.
27、(1)见解析;(2)时,的值最大,
【解析】
(1)延长BA、CF交于点G,利用可证△AFG≌△DFC得出,,根据,可证出,得出,利用,,点是的中点,得出,,则有,可得出,得出,即可得出结论;
(2)设BE=x,则,,由勾股定理得出,,得出,求出,由二次函数的性质得出当x=1,即BE=1时,CE2-CF2有最大值,,由三角函数定义即可得出结果.
【详解】
解:(1)证明:如图,延长交的延长线于点,
∵为的中点,
∴.
在中,,
∴.
在和中,
∴,
∴,,
∵.
∴,
∴,
∵,,点是的中点,
∴,.
∴.
∴.
∴.
在中,,
又∵,
∴.
∴
(2)设,则,
∵,
∴,
在中,,
在中,,
∵,
∴,
∴,
∴当,即时,的值最大,
∴.
在中,
【点睛】
本题考查了平行四边形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理、等腰三角形的判定与性质等知识;证明三角形全等和等腰三角形是解题的关键.
浙江省温州市苍南县六校联考2023-2024学年八年级上学期第一次月考数学试卷: 这是一份浙江省温州市苍南县六校联考2023-2024学年八年级上学期第一次月考数学试卷,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
浙江省温州市苍南县六校联考2023-2024学年八年级上学期期中数学试卷: 这是一份浙江省温州市苍南县六校联考2023-2024学年八年级上学期期中数学试卷,共4页。
浙江省温州市苍南县灵溪镇2023--2024学年九年级上学期六校联考期中检测数学试卷: 这是一份浙江省温州市苍南县灵溪镇2023--2024学年九年级上学期六校联考期中检测数学试卷,共4页。